【題目】如圖,在△ABC中,AC=BC,∠C=90°,D是AB的中點,DE⊥DF,點E,F(xiàn)分別在AC,BC上,求證:DE=DF.

【答案】解:連接CD,
∵∠C=90°,D是AB的中點,
∴CD= AB=BD,
∵AC=BC,
∴CD⊥AB,∠ACD=∠B=45°,
∴∠CDF+∠BDF=90°,
∵ED⊥DF,
∴∠EDF=90°,
∴∠EDC+∠CDF=90°,
∴∠EDC=∠BDF,
∴△ECD≌△FBD,
∴DE=DF.

【解析】連接CD,構(gòu)建全等三角形,證明△ECD≌△FBD即可.本題考查了等腰直角三角形和全等三角形的性質(zhì)和判定,運(yùn)用了直角三角形斜邊上的中線等于斜邊的一半,以及等腰三角形三線合一的性質(zhì),同時要熟知等腰直角三角形的特殊性:如兩個銳角都是45°;在全等三角形的證明中,常運(yùn)用同角的余角相等來證明角相等.
【考點精析】本題主要考查了等腰直角三角形的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(﹣1)2016+x0 +
(2) ÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC與BD交于點O,若增加一個條件,使ABCD成為菱形,下列給出的條件不正確的是(

A.AB=AD
B.AC⊥BD
C.AC=BD
D.∠BAC=∠DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個動點(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點D,射線PD交射線CA于點E.

(1)若點E在線段CA的延長線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)BP=2 時,試說明射線CA與⊙P是否相切.
(3)連接PA,若SAPE= SABC , 求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10cm;BC=6cm,點D為AB的中點.

(1)如果點P在線段BC上以1cm/s的速度由點B向點C運(yùn)動,同時,點Q在線段CA上由點C向點A運(yùn)動.

若點Q的運(yùn)動速度與點P的運(yùn)動速度相等,經(jīng)過1秒后,BPD與CQP是否全等,請說明理由;

若點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,當(dāng)點Q的運(yùn)動速度為多少時,能夠使BPD與CQP全等?

(2)若點Q以中的運(yùn)動速度從點C出發(fā),點P以原來的運(yùn)動速度從點B出發(fā)都逆時針沿ABC三邊運(yùn)動,直接寫出經(jīng)過多少秒后,點P與點Q第一次在ABC的那一條邊上相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點P為圓上一點,點C為AB延長線上一點,PA=PC,∠C=30°.

(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、F、C、E在一條直線上,AB∥ED,AC∥FD,那么添加下列一個條件后,仍無法判定△ABC≌△DEF的是(

A.AB=DE
B.AC=DF
C.∠A=∠D
D.BF=EC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,∠CDB=30°,⊙O的半徑為5cm,則圓心O到弦CD的距離為(

A. cm
B.3cm
C.3 cm
D.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:“兩邊及其中一邊的對角分別相等的兩個三角形不一定全等”.但是,小亮發(fā)現(xiàn):當(dāng)這兩個三角形都是銳角三角形時,它們會全等,除小亮的發(fā)現(xiàn)之外,當(dāng)這兩個三角形都是時,它們也會全等;當(dāng)這兩個三角形其中一個三角形是銳角三角形,另一個是時,它們一定不全等.

查看答案和解析>>

同步練習(xí)冊答案