【題目】某商場(chǎng)銷售的某種商品每件的標(biāo)價(jià)是元,若按標(biāo)價(jià)的八折銷售,仍可盈利,此時(shí)該種商品每星期可賣出件,市場(chǎng)調(diào)查發(fā)現(xiàn):在八折銷售的基礎(chǔ)上,該種商品每降價(jià)元,每星期可多賣件.設(shè)每件商品降價(jià)元(為整數(shù)),每星期的利潤為元
(1)求該種商品每件的進(jìn)價(jià)為多少元?
(2)當(dāng)售價(jià)為多少時(shí),每星期的利潤最大?最大利潤是多少?
(3)2019年2月該種商品每星期的售價(jià)均為每件元,若2019年2月的利潤不低于元,請(qǐng)求出的取值范圍.
【答案】(1)40,(2)售價(jià)為或元時(shí),每星期最大利潤為元;(3)
【解析】
(1)設(shè)成本為元,根據(jù)題意得:80×80%=,即可解答;
(2)根據(jù)題意得到,利用二次函數(shù)的性質(zhì),即可解答;
(3)利用每星期的利潤恰為24000÷4=6000元建立一元二次方程,求出方程的解,進(jìn)一步確定取值范圍.
解:(1)設(shè)進(jìn)價(jià)為元,則,
解得:
∴求該種商品每件的進(jìn)價(jià)為40元;
(2)設(shè)每星期的利潤為,則
.
∴為整數(shù),當(dāng)或時(shí),有最大值為元,
即售價(jià)為或元時(shí),每星期最大利潤為元;
(3)由題意得:,
解得:,,
∴(元),(元),
∵2019年2月該種商品每星期的售價(jià)均為每件元,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計(jì)算這10位居民一周內(nèi)使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AB是⊙O的直徑,AC交⊙O于G,E是AG上一點(diǎn),D為△BCE內(nèi)心,BE交AD于F,且∠DBE=∠BAD.
(1)求證:BC是⊙O的切線;
(2)求證:DF=DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張長方形紙板的四個(gè)角上分別剪掉2個(gè)小正方形和2個(gè)小長方形(陰影部分即剪掉的部分),剩余的部分可以折成一個(gè)有蓋的長方體盒子(紙板的厚度忽略不計(jì)).若長方形紙板邊長分別為40cm和30cm,且折成的長方體盒子表面積是950cm2,此時(shí)長方體盒子的體積為_____cm3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰,點(diǎn)為斜邊上,作與相切于點(diǎn),交于點(diǎn)、點(diǎn).已知,,則的長度為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為a,點(diǎn)E在邊AB上運(yùn)動(dòng)(不與點(diǎn)A,B重合),∠DAM=45°,點(diǎn)F在射線AM上,且,CF與AD相交于點(diǎn)G,連接EC,EF,EG,則下列結(jié)論:①∠ECF=45°;②的周長為;③ ;④的面積的最大值.其中正確的結(jié)論是____.(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OC=2OB則下列結(jié)論:①abc<0;②a+b+c>0;③ac﹣2b+4=0;④OAOB=,其中正確的結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC.
(1)如圖1,通過圖形旋轉(zhuǎn)的性質(zhì)可知AD=_____,∠DAE=_____度.
(解決問題)
(2)如圖1,證明BC=DC+EC;
(拓展延伸)
如圖2,在△ABC中,∠BAC=90°,AB=AC,D為△ABC外一點(diǎn),且∠ADC=45°,仍將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,ED.
(3)若AD=6,CD=3,求BD的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com