已知函數(shù)y=(t2+t-2).
(1)當(dāng)t為何值時(shí),此函數(shù)是二次函數(shù);
(2)當(dāng)t為何值時(shí),此函數(shù)是反比例函數(shù).
解:(1)∵此函數(shù)是二次函數(shù), ∴ 即 ∴t=-3時(shí),指數(shù)是t2+2t-1=9-6-1=2,系數(shù)t2+t-2=9-3-2=4≠0,此函數(shù)是二次函數(shù). (2)∵此函數(shù)是反比例函數(shù), ∴ 即 ∴t=0時(shí),指數(shù)t2+2t-1=-1,系數(shù)t2+t-2=-2≠0,此函數(shù)是反比例函數(shù). 思路點(diǎn)撥:根據(jù)二次函數(shù)、反比例函的定義,得到關(guān)于t的方程及不等式,求解得結(jié)論. 評(píng)注:在求解本題時(shí),不但要考慮x的指數(shù)為2或-1,還要注意它們的系數(shù)不為0,也即在解題過(guò)程中要考慮參數(shù)取值的特殊情形. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2013年四川省南充市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:013
如圖1,把矩形ABCD邊AD上一點(diǎn),點(diǎn)P,點(diǎn)Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1 cm/s,設(shè)P,Q出發(fā)t秒時(shí),△BPQ的面積為ycm2,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線(xiàn)OM為拋物線(xiàn)的一部分),則下列結(jié)論:
①AD=BE=5 cm;
②當(dāng)0<t≤5時(shí);y=t2;
③直線(xiàn)NH的解析式為y=-t+27;
④若△ABE與△QBP相似,則t=秒.
其中正確的結(jié)論個(gè)數(shù)為
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2009年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試題及答案(純word版) 題型:044
已知:t1,t2是方程t2+2t-24=0的兩個(gè)實(shí)數(shù)根,且t1<t2,拋物線(xiàn)的圖象經(jīng)過(guò)點(diǎn)A(t1,0),B(0,t2).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P(x,y)是拋物線(xiàn)上一動(dòng)點(diǎn),且位于第三象限,四邊形OPAQ是以O(shè)A為對(duì)角線(xiàn)的平行四邊形,求□OPAQ的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)在(2)的條件下,當(dāng)□OPAQ的面積為24時(shí),是否存在這樣的點(diǎn)P,使□OPAQ為正方形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省杭州市西湖區(qū)中考一模數(shù)學(xué)試卷(帶解析) 題型:單選題
如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線(xiàn)BE—ED—DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線(xiàn)OG為拋物線(xiàn)的一部分,其余各部分均為線(xiàn)段),則下列結(jié)論:
①當(dāng)0<t≤5時(shí),y=t2;②當(dāng)t=6秒時(shí),△ABE≌△PQB;③cos∠CBE=;
④當(dāng)t=秒時(shí),△ABE∽△QBP;
其中正確的是( )
A.①② | B.①③④ | C.③④ | D.①②④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省杭州市西湖區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線(xiàn)BE—ED—DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線(xiàn)OG為拋物線(xiàn)的一部分,其余各部分均為線(xiàn)段),則下列結(jié)論:
①當(dāng)0<t≤5時(shí),y=t2;②當(dāng)t=6秒時(shí),△ABE≌△PQB;③cos∠CBE=;
④當(dāng)t=秒時(shí),△ABE∽△QBP;
其中正確的是( )
A.①② B.①③④ C.③④ D.①②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com