2cm
分析:過P作PF⊥OB于F,根據(jù)角平分線的定義可得∠AOC=∠BOC=15°,根據(jù)平行線的性質(zhì)可得∠DPO=∠AOP,從而可得PD=OD,再根據(jù)30度所對的邊是斜邊的一半可求得PF的長,最后根據(jù)角平分線的性質(zhì)即可求得PE的長.
解答:
解:過P作PF⊥OB于F,
∵∠AOB=30°,OC平分∠AOB,
∴∠AOC=∠BOC=15°,
∵PD∥OA,
∴∠DPO=∠AOP=15°,
∴PD=OD=4cm,
∵∠AOB=30°,PD∥OA,
∴∠BDP=30°,
∴在Rt△PDF中,PF=
PD=2cm,
∵OC為角平分線,PE⊥OA,PF⊥OB,
∴PE=PF,
∴PE=PF=2cm.
故答案為:2cm.
點評:此題主要考查:(1)含30°度的直角三角形的性質(zhì):在直角三角形中,30°角所對的直角邊等于斜邊的一半.
(2)角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等.此題難易程度適中,是一道很典型的題目.