【題目】在△ABC中,AB=AC,D是線段BC的延長線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.
(1)如圖,點(diǎn)D在線段BC的延長線上移動(dòng),若∠BAC=40,則∠DCE= .
(2)設(shè)∠BAC=m,∠DCE=n.
①如圖,當(dāng)點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),m與n之間有什么數(shù)量關(guān)系?請說明理由.
②當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),m與n之間有什么數(shù)量關(guān)系?請直接寫出你的結(jié)論.
【答案】(1)40;(2)①m=n,理由見解析;②m+n=180°
【解析】試題分析:(1)可證△ABD≌△ACE,可得∠ACE=∠B,即可解題;
(2)①根據(jù)△ABD≌△ACE可分別求得∠BCE用m和用n分別表示,即可求得m、n的關(guān)系;②分兩種情況分析,第1種,當(dāng)D在線段BC的延長線上或反向延長線上時(shí),第2種,當(dāng)D在線段BC上時(shí).
試題解析:(1)∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠ACE=∠B,
∵AB=AC,∠BAC=40°,
∴∠ACE=∠B=70°,
∴∠DCE=180°70°70°=40°;
(2) ①∵△ABD≌△ACE(1)已證,
∴∠ACE=∠B,
∵AB=AC,∠BAC=m,
∴∠ACE=∠B=∠ACB=,
∴∠BCE=∠ACB+∠ACE=180°m,
∵∠BCE=180°∠DCE=180°n,
∴m=n.
②當(dāng)D在線段BC的延長線上或反向延長線上時(shí),m=n,
當(dāng)D在線段BC上時(shí),m+n=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.面積相等的兩個(gè)三角形全等B.等邊三角形都全等
C.底邊和頂角對(duì)應(yīng)相等的等腰三角形全等D.兩個(gè)等腰直角三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點(diǎn).
(1)試求拋物線的解析式;
(2)記拋物線頂點(diǎn)為D,求△BCD的面積;
(3)若直線向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與點(diǎn)P(5,-3)關(guān)于x 軸對(duì)稱的點(diǎn)的坐標(biāo)是( )
A.(5,3)
B.(-5,3)
C.(-3,5)
D.(3,-5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣某樓盤準(zhǔn)備以每平方米6500元的均價(jià)對(duì)外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購房者持幣觀望,為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對(duì)價(jià)格經(jīng)過兩次下調(diào)后,決定以每平方米5265元的均價(jià)開盤銷售,則每次下調(diào)的百分率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題是( )
A.對(duì)頂角相等
B.三角形兩邊的和小于第三邊
C.菱形的四條邊都相等
D.多邊形的外角和等于360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一籃蘋果,平均分給幾個(gè)小朋友,每人3個(gè),則多2個(gè);每人4個(gè)則少3個(gè).問:有幾個(gè)小朋友,幾個(gè)蘋果?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com