【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)求證:.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)本題要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,則DC=EA,AC=BC,∠ACB=∠ECD,又因為兩角有一個公共的角∠ACD,所以∠BCD=∠ACE,根據(jù)SAS得出△ACE≌△BCD.
(2)由(1)的論證結(jié)果得出∠DAE=90°,AE=DB,從而求出AD2+DB2=DE2,即2CD2=AD2+DB2.
試題解析:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD ,CD=CE,∴△AEC≌△BDC(SAS);
(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴.
由(1)知AE=DB,∴,即.
科目:初中數(shù)學 來源: 題型:
【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在坐標系中描出各點,畫出△ABC.
(2)求△ABC的面積;
(3)設點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2﹣x+2與x軸交于A、B兩點,與y軸交于點C
(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度數(shù).
請將以下解答補充完整,
解:因為∠DAB+∠D=180°
所以DC∥AB()
所以∠DCE=∠B()
又因為∠B=95°,
所以∠DCE=°;
因為AC平分∠DAB,∠CAD=25°,根據(jù)角平分線定義,
所以∠CAB==°,
因為DC∥AB
所以∠DCA=∠CAB,()
所以∠DCA=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在ABCD中,E,F(xiàn)是對角線BD上的兩點,則以下條件不能判斷四邊形AECF為平行四邊形的是( )
A.BE=DF
B.AF⊥BD,CE⊥BD
C.∠BAE=∠DCF
D.AF=CE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=﹣x+3與直線l2:y=x+1相交于點A.并且l1交x軸于點B,l2交x軸于點C.若平面上有一點D,構(gòu)成平行四邊形ABDC,請寫出D點坐標 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com