如圖,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB繞頂點(diǎn)O逆時(shí)針旋轉(zhuǎn)到△A′OB′處,此時(shí)線段A′B′與BO的交點(diǎn)E為BO的中點(diǎn),則線段B′E的長(zhǎng)度為   
【答案】分析:利用勾股定理列式求出AB,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AO=A′O,A′B′=AB,再求出OE,從而得到OE=A′O,過(guò)點(diǎn)O作OF⊥A′B′于F,利用三角形的面積求出OF,利用勾股定理列式求出EF,再根據(jù)等腰三角形三線合一的性質(zhì)可得A′E=2EF,然后根據(jù)B′E=A′B′-A′E代入數(shù)據(jù)計(jì)算即可得解.
解答:解:∵∠AOB=90°,AO=3,BO=6,
∴AB===3,
∵△AOB繞頂點(diǎn)O逆時(shí)針旋轉(zhuǎn)到△A′OB′處,
∴AO=A′O=3,A′B′=AB=3,
∵點(diǎn)E為BO的中點(diǎn),
∴OE=BO=×6=3,
∴OE=A′O,
過(guò)點(diǎn)O作OF⊥A′B′于F,
S△A′OB′=×3•OF=×3×6,
解得OF=,
在Rt△EOF中,EF===
∵OE=A′O,OF⊥A′B′,
∴A′E=2EF=2×=(等腰三角形三線合一),
∴B′E=A′B′-A′E=3-=
故答案為:
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理的應(yīng)用,等腰三角形三線合一的性質(zhì),以及三角形面積,熟練掌握旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△AOB中,∠A=∠B,以O(shè)為圓心的圓經(jīng)過(guò)AB的中點(diǎn)C,且分別交OA、OB于點(diǎn)精英家教網(wǎng)E、F
(1)求證:AB是⊙O的切線;
(2)當(dāng)△AOB腰上的高等于底邊的一半,且AB=4
3
時(shí),求劣弧ECF的長(zhǎng)及陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,△AOB中,∠B=30度.將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)52°得到△A′OB′,邊A′B′與邊OB交于點(diǎn)C(A′不在OB上),則∠A′CO的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△AOB中,OA=3cm,OB=1cm,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°到△A′OB′,那么AB掃過(guò)的區(qū)域(圖中陰影部分)的面積是
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△AOB中,OA=OB,∠AOB=90゜,BD平分∠ABO交OA于D,AE⊥BD于E.
求證:BD=2AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△AOB中,OA=OB=10,∠AOB=120°,以O(shè)為圓心,5為半徑的⊙O與OA、OB相交.
求證:AB是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案