作业宝已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點.
(1)求菱形ABCD的面積.
(2)求PM+PN的最小值.

解:(1)∵菱形ABCD的兩條對角線分別為6和8,
∴菱形ABCD的面積為:×6×8=24;

(2)作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,
連接AC,
∵四邊形ABCD是菱形,
∴AC⊥BD,∠QBP=∠MBP,
即Q在AB上,
∵MQ⊥BD,
∴AC∥MQ,
∵M為BC中點,
∴Q為AB中點,
∵N為CD中點,四邊形ABCD是菱形,
∴BQ∥CD,BQ=CN,
∴四邊形BQNC是平行四邊形,
∴NQ=BC,
∵四邊形ABCD是菱形,
∴CO=AC=3,BO=BD=4,
在Rt△BPC中,由勾股定理得:BC=5,
即NQ=5,
∴MP+NP=QP+NP=QN=5,
∴PM+PN的最小值為:5.
分析:(1)利用菱形ABCD的兩條對角線乘積的一半等于菱形面積求出即可;
(2)利用已知得出四邊形BQNC是平行四邊形,則NQ=BC,再利用菱形的性質(zhì)以及勾股定理得出MP+NP=QP+NP=QN的值.
點評:此題主要考查了菱形的性質(zhì)以及平行四邊形的判定與性質(zhì)和勾股定理等知識,熟練根據(jù)菱形的性質(zhì)得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的兩條對角線BD、AC的長分別是6cm、8cm,求這個菱形的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知菱形ABCD的兩條對角線相交于點O,若AB=6,∠BDC=30°,則菱形的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知菱形ABCD的兩條對角線AC、BD的乘積等于菱形的一條邊長的平方,則菱形的一個鈍角的大小是( 。
A、165°B、150°C、135°D、120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD的兩條對角線AC與BD交于平面直角坐標(biāo)系的原點,且AD∥x軸,點A的坐標(biāo)為(-2,3),則點B的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江)已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值=
5
5

查看答案和解析>>

同步練習(xí)冊答案