如圖,直線與雙曲線交于C、D兩點,與x軸交于點A.

(1)求n的取值范圍和點A的坐標;
(2)過點C作CB⊥y軸,垂足為B,若S ABC=4,求雙曲線的解析式;
(3)在(1)、(2)的條件下,若AB=,求點C和點D的坐標并根據(jù)圖象直接寫出反比例函數(shù)的值小于一次函數(shù)的值時,自變量x的取值范圍.
解:(1)由圖象得:n+1<0,解得:n<-1。
由y=kx+k,令y=0,解得:,∴A坐標為(-1,0)。
(2)設C(a,b),
,∴ab=-8。
∵點C在雙曲線上,∴雙曲線的解析式為。
(3)∵CB⊥y軸,∴B(0,b)。
在Rt△AOB中,AB=,OA=1,根據(jù)勾股定理得:OB=4。
∴B(0,-4)。∴C(2,-4)。
將C代入直線y=kx+k中,得:2k+k=-4,即。
∴直線AC解析式為
聯(lián)立直線與反比例解析式得:,解得:
∴D(-3,)。
則由圖象可得:當x<-3或0<x<2時,反比例函數(shù)的值小于一次函數(shù)的值。

試題分析:(1)由反比例函數(shù)圖象位于第二、四象限,得到比例系數(shù)小于0列出關于n的不等式,求出不等式的解集即可得到n的范圍,對于直線解析式,令y=0求出x的值,確定出A的坐標即可。
(2)設C(a,b),表示出三角形ABC的面積,根據(jù)已知的面積列出關于a與b的關系式,利用反比例函數(shù)k的幾何意義即可求出k的值,確定出反比例解析式。
(3)由CB垂直于y軸,得到B,C縱坐標相同,即B(0,b),在直角三角形AOB中,由AB與OA的長,利用勾股定理求出OB的長,確定出B坐標,進而確定出C坐標,將C代入直線解析式求出k的值,確定出一次函數(shù)解析式,與反比例解析式聯(lián)立求出D的坐標,由C,D兩點的橫坐標,利用圖象即可求出反比例函數(shù)的值小于一次函數(shù)的值時,自變量x的取值范圍。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,函數(shù)y1=-x+4的圖象與函數(shù)y2=(x>0)的圖象交于 A(a,1)、B(1,b)兩點.

(1)求a,b及y2的函數(shù)關系式;
(2)觀察圖象,當x>0時,比較y1與y2大小.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數(shù)的圖象在第二象限交與點C,如果點A為的坐標為(2,0),B是AC的中點.

(1)求點C的坐標;
(2)求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,平面直角坐標系中,直線與x軸交于點A,與雙曲線在第一象限內(nèi)交于點B,BC丄x軸于點C,OC=2AO.求雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)的圖象經(jīng)過(1,2),則反比例函數(shù)的圖象經(jīng)過點(2,    ).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川瀘州8分)如圖,已知函數(shù)與反比例函數(shù)(x>0)的圖象交于點A.將的圖象向下平移6個單位后與雙曲線交于點B,與x軸交于點C.

(1)求點C的坐標;
(2)若,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列四個點中,在反比例函數(shù)的圖象上的是【   】
A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

工匠制作某種金屬工具要進行材料煅燒和鍛造兩個工序,即需要將材料燒到800℃,然后停止煅燒進行鍛造操作,經(jīng)過8min時,材料溫度降為600℃.煅燒時溫度y(℃)與時間x(min)成一次函數(shù)關系;鍛造時,溫度y(℃)與時間x(min)成反比例函數(shù)關系(如圖).已知該材料初始溫度是32℃.

(1)分別求出材料煅燒和鍛造時y與x的函數(shù)關系式,并且寫出自變量x的取值范圍;
(2)根據(jù)工藝要求,當材料溫度低于480℃時,須停止操作.那么鍛造的操作時間有多長?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在同一平面直角坐標系中,正比例函數(shù)y=(m﹣1)x與反比例函數(shù)y=的圖象的大體位置不可能是(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案