【題目】有這樣一道題:“當(dāng)a2019b=-3時,求多項(xiàng)式a2b3abb2(4a2b3abb2)(3a2b3ab)5的值”,馬小虎做題時把a2019題抄成a=-2019,但他做出的結(jié)果卻是正確的,你知道這是怎么回事嗎?請說明理由,并求出結(jié)果。

【答案】見解析,13

【解析】

原式去括號合并得到最簡結(jié)果,即可作出判斷.

a2b3-ab+b2-4a2b3-ab-b2+3a2b3+ab-5
=a2b3-ab+b2-4a2b3+ab+b2+3a2b3+ab-5
=2b2-5,
∴此整式化簡后與a的值無關(guān),
∴馬小虎做題時把a=2019錯抄成a=-2019,但他做出的結(jié)果卻是正確的.
當(dāng)b=-3時,原式=2×-32-5=13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一對數(shù),如下表,第個數(shù)比第n個數(shù)大2(其中n是正整數(shù))

1

2

3

4

5

……

a

b

c

(1)5個數(shù)表示為______;第7個數(shù)表示為_______.

(2)若第10個數(shù)是5,第11個數(shù)是8,第12個數(shù)為9,則a______,b_____,c______.

(3)2019個數(shù)可表示為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗(yàn)、觀察、類比,最后歸納、猜測得出結(jié)論.

探究一:

1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

此時,顯然能搭成一種等腰三角形。所以,當(dāng)時,

2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

所以,當(dāng)時,

3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

所以,當(dāng)時,

4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

所以,當(dāng)時,

綜上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?

(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表中)

2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三

角形?(只需把結(jié)果填在表中)


7

8

9

10






你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……

解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

(設(shè)分別等于、、,其中是整數(shù),把結(jié)果填在表中)











問題應(yīng)用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形ABC中,∠ABC=90°,∠C=30°,AB=4,以B為圓心,BA為半徑作⊙BBC于點(diǎn)D,旋轉(zhuǎn)∠ABD交⊙B于點(diǎn)E、F,連接EFAC、BC邊于點(diǎn)G、H

1)若BEAC,求tanCGH的值;

2)若AG=4,求BEFABC重疊部分的面積;

3BHE是等腰三角形時,∠ABD逆時針旋轉(zhuǎn)的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用小立方塊搭一個幾何體,使它從正面和上面看到的形狀如圖所示,從上面看到形狀中小正方形中的字母表示在該位置上小立方塊的個數(shù),請問:

1各表示幾? 答:_____ ,_____;

2)這個幾何體最少由_____個小立方塊搭成,最多由____個小立方塊搭成;

3)能搭出滿足條件的幾何體共有____種情況,其中從左面看這個幾何體的形狀圖共有____種,請?jiān)谒o網(wǎng)格圖中畫出其中的任意一種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的第一邊長為a22ab+b2,第二邊比第一邊的3倍少3,三角形的周長是5a27ab+5b21.

1)求這個三角形的第三邊長;

2)當(dāng)a=b=-3時,求第三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC于點(diǎn)F,連接DF,分析下列五個結(jié)論:①△AEF∽△CAB;CF=2AF;DF=DC;tanCAD=;S四邊形CDEF=SABF,其中正確的結(jié)論有(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動,速度為1cm/s,同時,點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動,速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動時,點(diǎn)Q也停止運(yùn)動.連接PQ,設(shè)運(yùn)動時間為t(0<t<4)s,解答下列問題:

(1)求證:△BEF∽△DCB;

(2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動時,若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過點(diǎn)QQG⊥AB,垂足為G,當(dāng)t為何值時,四邊形EPQG為矩形,請說明理由;

(4)當(dāng)t為何值時,△PQF為等腰三角形?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值

(1),其中x=-2,y=1

(2)a2b+3ab2a2b)﹣22ab2a2b),其中(a+12+|b+2|=0

查看答案和解析>>

同步練習(xí)冊答案