如圖,△ABC與△A′B′C′是位似圖形,且頂點都在格點上,每個小正方形的邊長都為1.
(1)在圖上標出位似中心D的位置,并寫出該位似中心D的坐標是 ;
(2)求△ABC與△A′B′C′的面積比.
科目:初中數(shù)學 來源: 題型:解答題
如圖,△ABC中,AB=AC,作以AB為直徑的⊙O與邊BC交于點D,過點D作⊙O的切線,分別交AC、AB的延長線于點E、F.
(1)求證:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設運動的時間為t秒.
(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
探究一:如圖1,已知正方形ABCD,E、F分別是BC、AB上的兩點,且AE⊥DF.小明經(jīng)探究,發(fā)現(xiàn)AE=DF.請你幫他寫出證明過程.
探究二:如圖2,在矩形ABCD中,AB=3,BC=4,E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE⊥FH.小明發(fā)現(xiàn),GE與FH并不相等,請你幫他求出的值.
探究三:小明思考這樣一個問題:如圖3,在正方形ABCD中,若E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE=FH,試問:GE⊥FH是否成立?若一定成立,請給予證明;若不一定成立,請畫圖并作出說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
提出問題:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點E、F是AD的3等分點,點G、H是BC的3等分點,連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,
因為△EGH與△EBH高相等,底的比是1:2,
所以S△EGH=S△EBH
因為△EFH與△DEH高相等,底的比是1:2,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是2:3,
所以S△DBE=S△ABD
因為△BDH與△BCD高相等,底的比是2:3,
所以S△BDH=S△BCD
所以S△DBE +S△BDH=S△ABD+S△BCD =(S△ABD+S△BCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢
驗證你的猜想:
(2)問題解決:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為: (不必寫出求解過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設運動的時間為t秒.
(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上).
(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為_________;
②當AC=3,BC=4時,AD的長為_________;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com