【題目】為爭創(chuàng)文明城市,我市交警部門在全市范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進行問卷調(diào)查,并將兩次收集的數(shù)據(jù)制成如下統(tǒng)計圖表.
類別 | 人數(shù) | 百分比 |
A | 68 | 6.8% |
B | 245 | b% |
C | a | 51% |
D | 177 | 17.7% |
總計 | c | 100% |
根據(jù)以上提供的信息解決下列問題:
(1)a= ,b= c=
(2)若我市約有30萬人使用電瓶車,請分別計算活動前和活動后全市騎電瓶車“都不戴”安全帽的人數(shù).
(3)經(jīng)過某十字路口,汽車無法繼續(xù)直行只可左轉(zhuǎn)或右轉(zhuǎn),電動車不受限制,現(xiàn)有一輛汽車和一輛電動車同時到達該路口,用畫樹狀圖或列表的方法求汽車和電動車都向左轉(zhuǎn)的概率.
【答案】(1)10,24.5,1000;(2)活動前5.31萬人,活動后2.67萬人;(3)p=
【解析】
(1)用表格中的A組的人數(shù)除以其百分比,得到總?cè)藬?shù)c,運用“百分比=人數(shù)÷總?cè)藬?shù)”及其變形公式即可求出a、b的值;
(2)先把活動后各組人數(shù)相加,求出活動后調(diào)查的樣本容量,再運用“百分比=人數(shù)÷總?cè)藬?shù)”求出活動前和活動后全市騎電瓶車“都不戴”安全帽的百分比,再用樣本估計總體;
(3)先畫樹狀圖展示所有6種等可能的結(jié)果數(shù),再求汽車和電動車都向左轉(zhuǎn)的概率.
(1)∵,
∴,,
∴;
(2)∵活動后調(diào)查了896+702+224+178=2000人,“都不戴”安全帽的占,
∴由此估計活動后全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù):30萬=2.67(萬人);
同理:估計活動前全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù):30萬萬人;
答:估計活動前和活動后全市騎電瓶車“都不戴”安全帽的總?cè)藬?shù)分別為5.31萬人和2.67萬人;
(3)畫樹狀圖:
∴共有6種等可能的結(jié)果數(shù),汽車和電動車都向左轉(zhuǎn)的只有1種,
∴汽車和電動車都向左轉(zhuǎn)的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】每到春夏交替時節(jié),楊樹的楊絮漫天飛舞,易引發(fā)皮膚病、呼吸道疾病等,給人們生活造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(調(diào)查問卷如下),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖:
調(diào)查問卷
治理楊絮:您選哪一項? (每人只選一項)
A.減少楊樹新增面積,控制楊樹每年的栽種量;
B.調(diào)整樹種結(jié)構,逐漸更換現(xiàn)有楊樹;
C.選育無絮楊品種,并推廣種植;
D.對楊樹注射生物干擾素,避免產(chǎn)生飛絮;
E.其他.
根據(jù)以上信息,解答下列問題:
(1)在扇形統(tǒng)計圖中,求扇形的圓心角度數(shù);
(2)補全條形統(tǒng)計圖;
(3)若該市約有萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】模具廠計劃生產(chǎn)面積為4,周長為m的矩形模具.對于m的取值范圍,小亮已經(jīng)能用“代數(shù)”的方法解決,現(xiàn)在他又嘗試從“圖形”的角度進行探究,過程如下:
(1)建立函數(shù)模型
設矩形相鄰兩邊的長分別為x,y,由矩形的面積為4,得xy=4,即;由周長為m,得2(x+y)=m,即y=-x+.滿足要求的(x,y)應是兩個函數(shù)圖象在第 象限內(nèi)交點的坐標.
(2)畫出函數(shù)圖象
函數(shù)(x>0)的圖象如圖所示,而函數(shù)y=-x+的圖象可由直線y=-x平移得到.請在同一直角坐標系中直接畫出直線y=-x.
(3)平移直線y=x,觀察函數(shù)圖象
在直線平移過程中,交點個數(shù)有哪些情況?請寫出交點個數(shù)及對應的周長m的取值范圍.
(4)得出結(jié)論 若能生產(chǎn)出面積為4的矩形模具,則周長m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是半圓的直徑,,.是弧上的一個動點(含端點,不含端點),連接,過點作于,連接,在點移動的過程中,的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點、,以為邊在軸下方作正方形,點是線段與正方形的外接圓的交點,連接與相交于點.
(1)求證:;
(2)若,試求經(jīng)過、、三點的拋物線的解析式;
(3)在(2)的條件下,將拋物線在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新圖象,若直線向上平移t個單位與新圖象有兩個公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,點B位于(4,0)、(5,0)之間,與y軸交于點C,對稱軸為直線x=2,直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點,D點在x軸上方且橫坐標小于5,則下列結(jié)論:①4a+b+c>0;②a﹣b+c<0;③m(am+b)<4a+2b(其中m為任意實數(shù));④a<﹣1,其中正確的是( )
A.①②③④B.①②③C.①②④D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學生必選且只能選一項.現(xiàn)隨機抽查了部分學生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
抽取的學生最喜歡體育活動的條形統(tǒng)計圖
抽取的學生最喜歡體育活動的扇形統(tǒng)計圖
請結(jié)合以上信息解答下列問題:
(1)在這次調(diào)查中一共抽查了_____學生,扇形統(tǒng)計圖中“乒乓球”所對應的圓心角為_____度,并請補全條形統(tǒng)計圖;
(2)己知該校共有1200名學生,請你估計該校最喜愛跑步的學生人數(shù);
(3)若在“排球、足球、跑步、乒乓球”四個活動項目任選兩項設立課外興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“排球、乒乓球”這兩項活動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BD交BD于點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD,連接MF,NF.
(1)判斷△BMN的形狀,并證明你的結(jié)論;
(2)判斷△MFN與△BDC之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com