【題目】如圖,在□ABCD,延長AB到點E,使BE=AB,連接DEBC于點F,則下列結(jié)論不一定成立的是( )

A. E=CDF B. BE=CD C. ADE=BFE D. BE=2CF

【答案】D

【解析】

先根據(jù)平行四邊形的性質(zhì)可得CD∥AB,AD∥BC,CD=AB,再根據(jù)平行線的性質(zhì)可得∠E=∠CDF,ADE=BFE;再證明△DCF≌△EBF可得CF=BF=BC,根據(jù)題意不能證明BC=BE,因此BE不一定等于2CF.

∵四邊形ABCD是平行四邊形,
∴CD∥AB,CD=AB, AD∥BC,

∴∠E=∠CDF,(故A成立);

∵BE=AB
∴BE=CD, (故B成立);

∵AD∥BC,

ADE=BFE (故C成立);

在△CDF和△BEF中,

∴△DCF≌△EBF(AAS),

∴CF=BF=BC,

∴BC=2CF
∵BC不一定等于BE,
∴2CF不一定等于BE,(故D不一定成立);
故選:D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P的坐標為2,a2+1,則點P所在的象限是____;以方程組 的解為坐標的點x,y在平面直角坐標系中的位置是__________;在平面直角坐標系中,如果mn0,請寫出點m,|n|可能在的所有象限:____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)43(x2)x.

(2)1.

(3)x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在等腰RtABC中,∠ACB90°,CD平分∠ACBAB于點D.點P為線段CD上一點(不與端點C、D重合),PEPA,PEBC的延長線交于點E,與AC交于點F,連接AE、APBP

1)求證:APBP;

2)求∠EAP的度數(shù);

3)探究線段EC、PD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+ x+c與x軸的負半軸交于點A,與y軸交于點B,連結(jié)AB,點C(6, )在拋物線上,直線AC與y軸交于點D.

(1)求c的值及直線AC的函數(shù)表達式;
(2)點P在x軸正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設(shè)點M的橫坐標為m,求AN的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、BCD的平分線交于點O1稱為第1次操作,作∠O1DC、O1CD的平分線交于點O2稱為第2次操作,作∠O2DC、O2CD的平分線交于點O3稱為第3次操作,,則第5次操作后∠CO5D的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班同學響應“陽光體育運動”號召,利用課外活動積極參加體育鍛煉,每位同學從長跑、鉛球、立定跳遠、籃球定時定點投籃中任選一項進行了訓練,訓練前后都進行了測試,現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃進球數(shù)(每人投10次)進行整理,作出如下統(tǒng)計圖表.

進球數(shù)(個)

8

7

6

5

4

3

人數(shù)

2

1

4

7

8

2


請你根據(jù)圖表中的信息回答下列問題:
(1)訓練后籃球定時定點投籃人均進球數(shù)為個;進球數(shù)的中位數(shù)為個,眾數(shù)為個;
(2)該班共有多少學生;
(3)根據(jù)測試資料,參加籃球定時定點投籃的學生訓練后比訓練前的人均進球增加了20%,求參加訓練之前的人均進球數(shù)(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,點DBC邊上的點,CD= 3,△ABC沿直線AD翻折,使點C落在AB邊上的點E處,若點P是直線AD上的動點,PE+PB的最小值 ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的角平分線交于點E,過點EMNBCAB于點M,交AC于點N.若BM+CN=7,則MN的長為(

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步練習冊答案