【題目】如圖是某水庫大壩的橫截面示意圖,已知AD∥BC,且AD、BC之間的距離為15米,背水坡CD的坡度i=1:0.6,為提高大壩的防洪能力,需對大壩進行加固,加固后大壩頂端AE比原來的頂端AD加寬了2米,背水坡EF的坡度i=3:4,則大壩底端增加的長度CF是( )米.
A.7
B.11
C.13
D.20
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲經(jīng)銷商庫存有1200套A品牌服裝,每套進價400元,每套售價500元,一年內(nèi)可賣完,現(xiàn)市場流行B品牌服裝,每套進價300元,每套售價600元,但一年內(nèi)只允許經(jīng)銷商一次性訂購B品牌服裝,一年內(nèi)B品牌服裝銷售無積壓,因甲經(jīng)銷商無流動資金可用,只有低價轉(zhuǎn)讓A品牌服裝,用轉(zhuǎn)讓來的資金購進B品牌服裝,并銷售,經(jīng)與乙經(jīng)銷商協(xié)商,甲、乙雙方達成轉(zhuǎn)讓協(xié)議,轉(zhuǎn)讓價格y(元/套)與轉(zhuǎn)讓數(shù)量x(套)之間的函數(shù)關(guān)系式為y=﹣x+360(100≤x≤1200),若甲經(jīng)銷商轉(zhuǎn)讓x套A品牌服裝,一年內(nèi)所獲總利潤為W(元).
(1)求轉(zhuǎn)讓后剩余的A品牌服裝的銷售款Q1(元)與x(套)之間的函數(shù)關(guān)系式;
(2)求B品牌服裝的銷售款Q2(元)與x(套)之間的函數(shù)關(guān)系式;
(3)求W(元)與x(套)之間的函數(shù)關(guān)系式,并求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一次函數(shù)y=﹣2x+10的圖象與反比例函數(shù)(k>0)的圖象相交于A,B兩點(A在B的右側(cè)).
(1)當(dāng)A(4,2)時,求反比例函數(shù)的解析式及B點的坐標(biāo);
(2)在1的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點B(0,8)為端點的射線BG∥x軸,點A是射線BG上一個動點(點A與點B不重合),在射線AG上取AD=OB,作線段AD的垂直平分線,垂足為E,且與x軸交于點F,過點A作AC⊥OA,交射線EF于點C,連接OC、CD.設(shè)點A的橫坐標(biāo)為t.
(1)用含t的式子表示點E的坐標(biāo)為 ;
(2)當(dāng)t為何值時,∠OCD=180°?
(3)當(dāng)點C與點F不重合時,設(shè)△OCF的面積為S,求S與t之間的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標(biāo)有數(shù)字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數(shù)字,放回后洗勻再隨機抽出一張.
(1)請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個游戲公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠ABC=120°,E,F(xiàn)分別為AD,CD上的動點,且AE+CF=2,則線段EF長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AM平行于射線BN,∠B=90°,AB=4,C是射線BN上的一個動點,連接AC,作CD⊥AC,且AC=2CD,過C作CE⊥BN交AD于點E,設(shè)BC長為a.
(1)求△ACD的面積(用含a的代數(shù)式表示);
(2)求點D到射線BN的距離(用含有a的代數(shù)式表示);
(3)是否存在點C,使△ACE是以AE為腰的等腰三角形?若存在,請求出此時a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分∠BAC交邊BC于點E,經(jīng)過點A、D、E的圓的圓心F恰好在y軸上,⊙F與y軸相交于另一點G.
(1)求證:BC是⊙F的切線;
(2)若點A、D的坐標(biāo)分別為A(0,﹣1),D(2,0),求⊙F的半徑;
(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com