【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù).
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù).

【答案】
(1)解:60÷30%=200(人),

即本次被調(diào)查的學(xué)生有200人


(2)解:選擇文學(xué)的學(xué)生有:200×15%=30(人),

選擇體育的學(xué)生有:200﹣24﹣60﹣30﹣16=70(人),

補全的條形統(tǒng)計圖如下圖所示,


(3)解:1600× (人)

即全校選擇體育類的學(xué)生有560人.


【解析】(1)根據(jù)條形統(tǒng)計圖和扇形統(tǒng)計圖可知選擇勞技的學(xué)生60人,占總體的30%,從而可以求得調(diào)查學(xué)生人數(shù);(2)根據(jù)文學(xué)的百分比和(1)中求得的學(xué)生調(diào)查數(shù)可以求得文學(xué)的有多少人,從而可以求得體育的多少人,進而可以將條形統(tǒng)計圖補充完整;(3)根據(jù)調(diào)查的選擇體育的學(xué)生所占的百分比可以估算出全校選擇體育類的學(xué)生人數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=ax2+bx+c(a≠0)經(jīng)過原點,頂點為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時,求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經(jīng)過A點,求a與t之間的關(guān)系式;
(3)當(dāng)點A在拋物線y=x2﹣x上,且﹣2≤h<1時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABCD中,ABC=60°,且AB=BC,MAN=60°.請?zhí)剿鰾M,DN與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄的是今年長江某一周內(nèi)的水位變化情況,這一周的上周末的水位已達到警戒水位米(正號表示水位比前一天上升,負號表示水位比前一天下降).

星期

水位

變化(米)

+0.2

-0.4

+0.3

(1)本周哪一天長江的水位最高?位于警戒水位之上還是之下?

(2)與上周周末相比,本周周末長江的水位是上升了還是下降了?并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結(jié)MO、NO,以下四個結(jié)論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B=∠C,AD∥BC.

(1)證明:AD平分∠CAE;

(2)如果∠BAC=120°,求∠B的度數(shù).(不允許使用三角形內(nèi)角和為180°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,BCAF于點C,∠A+∠190°.

1)求證:ABDE;

2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關(guān)系(不考慮點P與點AD,C重合的情況)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= (k>0)的圖象上兩點A(x1, y1)和B(x2, y2),且x1x2>0,分別過A、Bx軸作AA1x軸于A1BB1x軸于B1,則_________ (填“>”“=”或“<”),若=2,則函數(shù)解析式為_________.

查看答案和解析>>

同步練習(xí)冊答案