【題目】如圖,在△ABC中,∠C=90°,D為CB上一點,過點D作DE⊥AB于點E.
(1)若CD=DE,判斷∠CAD與∠BAD的數(shù)量關(guān)系;
(2)若AE=EB,CB=10,AC=5,求△ACD的周長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運(yùn)動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小凡與小光從學(xué)校出發(fā)到距學(xué)校 5 千米的圖書館看書,途中小凡從路邊超市買了一些學(xué)習(xí)用品,如圖反應(yīng)了他們倆人離開學(xué)校的路程 s(千米)與時間 t(分鐘)的關(guān)系,請根據(jù)圖象提供的信息回答問題:
(1) 先出發(fā),先出發(fā)了 分鐘;
(2)當(dāng) t= 分鐘時,小凡與小光在去圖書館的路上相遇;
(3)小凡與小光從學(xué)校到圖書館的平均速度各是多少千米/小時?(不包括停留的時間)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分,,,垂足分別為A,B.下列結(jié)論中,一定成立的是_________.(填序號) ①;②平分;③ ④垂直平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k為常數(shù),k≠0)的圖象交于A、B兩點,過點A作AC⊥x軸,垂足為C,連接OA,已知OC=2,tan∠AOC=,B(m,﹣2)
(1)求一次函數(shù)和反比例函數(shù)的解析式.
(2)結(jié)合圖象直接寫出:當(dāng)y1>y2時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:將任意三個互不相等的數(shù)a,b,c按照從小到大的順序排列后,把處于中間位置的數(shù)叫做這三個數(shù)的中位數(shù).用符號mid{a,b,c}表示.例如mid{﹣1,2,1}=1.
(1)mid{,5,3}= .
(2)當(dāng)x<﹣2時,求mid{1+x,1﹣x,﹣1}.
(3)若x≠0,且mid{5,5﹣2x,2x+1}=2x+1,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正在改造的人行道工地上,有兩種鋪設(shè)路面材料:一種是長為acm、寬為bcm的矩形板材(如圖1),另一種是邊長為ccm的正方形地磚(如圖2).
(1)用多少塊如圖2所示的正方形地磚能拼出一個新的正方形?(只要寫出一個符合條件的答案即可),并寫出新正方形的面積;
(2)現(xiàn)用如圖1所示的四塊矩形板材鋪成一個大矩形(如圖3)或大正方形(如圖4),中間分別空出一個小矩形和一個小正方形.
①試比較中間的小矩形和中間的小正方形的面積哪個大?大多少?
②如圖4,已知大正方形的邊長比中間小正方形的邊長多20cm,面積大3200cm2.如果選用如圖2所示的正方形地磚(邊長為20cm)鋪設(shè)圖4中間的小正方形部分,那么能否做到不用切割地磚就可直接密鋪(縫隙忽略不計)呢?若能,請求出密鋪所需地磚的塊數(shù);若不能,至少要切割幾塊如圖2的地磚?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3 在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=a,則△A6B6A7的邊長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.點M在邊AC上,點N在邊BC上(點M、點N不與所在線段端點重合),BN=AM,連接AN,BM,射線AG∥BC,延長BM交射線AG于點D,點E在直線AN上,且AE=DE.
(1)如圖,當(dāng)∠ACB=90°時
①求證:△BCM≌△ACN;
②求∠BDE的度數(shù);
(2)當(dāng)∠ACB=α,其它多件不變時,∠BDE的度數(shù)是 (用含α的代數(shù)式表示)
(3)若△ABC是等邊三角形,AB=3,點N是BC邊上的三等分點,直線ED與直線BC交于點F,請直接寫出線段CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com