【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)軸、軸分別交于、兩點(diǎn),以為邊在第一象限作正方形沿軸負(fù)方向平移個(gè)單位長(zhǎng)度后,點(diǎn)恰好落在雙曲線(xiàn)上,則的值是__________

【答案】

【解析】

CEy軸于點(diǎn)E,交雙曲線(xiàn)于點(diǎn)G.作DFx軸于點(diǎn)F,易證OAB≌△FDA≌△BEC,求得A、B的坐標(biāo),根據(jù)全等三角形的性質(zhì)可以求得C、D的坐標(biāo),從而利用待定系數(shù)法求得反比例函數(shù)的解析式,進(jìn)而求得G的坐標(biāo),則a的值即可求解.

CEy軸于點(diǎn)E,交雙曲線(xiàn)于點(diǎn)G.DFx軸于點(diǎn)F.


y=3x+3,x=0,解得:y=3,B的坐標(biāo)是(0,3).
y=0,解得:x=1,A的坐標(biāo)是(1,0).
OB=3,OA=1.
∵∠BAD=90°
∴∠BAO+DAF=90°,
又∵直角ABO,BAO+OBA=90°
∴∠DAF=OBA,
OABFDA中,

∴△OAB≌△FDA(AAS)
同理,OAB≌△FDA≌△BEC,
AF=OB=EC=3DF=OA=BE=1,
D的坐標(biāo)是(4,1),C的坐標(biāo)是(3,4).代入y=得:k=4,則函數(shù)的解析式是:y=.
OE=4
C的縱坐標(biāo)是4,y=4代入y=得:x=1.G的坐標(biāo)是(1,4),
CG=2.
故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C0,﹣2),點(diǎn)A的坐標(biāo)是(2,0),P為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)PPDx軸于點(diǎn)D,交直線(xiàn)BC于點(diǎn)E,拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=﹣1

1)求拋物線(xiàn)的函數(shù)表達(dá)式;

2)若點(diǎn)P在第二象限內(nèi),且PEOD,求△PBE的面積.

3)在(2)的條件下,若M為直線(xiàn)BC上一點(diǎn),在x軸的上方,是否存在點(diǎn)M,使△BDM是以BD為腰的等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是“明清影視城”的一扇圓弧形門(mén),小紅到影視城游玩,她了解到這扇門(mén)的相關(guān)數(shù)據(jù):這扇圓弧形門(mén)所在的圓與水平地面是相切的,AB=CD=0.25m,BD=1.5m,且AB、CD與水平地面都是垂直的.根據(jù)以上數(shù)據(jù),請(qǐng)你幫小紅計(jì)算出這扇圓弧形門(mén)的最高點(diǎn)離地面的距離是( 。

A.2mB.2.5mC.2.4mD.2.1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為菱形,頂點(diǎn)A、Bx軸上,AB=5,點(diǎn)C在第一象限,且菱形ABCD的面積為20 A坐標(biāo)為(-2,0),則頂點(diǎn)C的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)點(diǎn)A4,1)的直線(xiàn)與反比例函數(shù)y的圖象交于點(diǎn)A、C,ABy軸,垂足為B,連接BC

1)求反比例函數(shù)的表達(dá)式;

2)若ABC的面積為6,求直線(xiàn)AC的函數(shù)表達(dá)式;

3)在(2)的條件下,點(diǎn)P在雙曲線(xiàn)位于第一象限的圖象上,若∠PAC90°,則點(diǎn)P的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=x2bxcx軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對(duì)稱(chēng)軸是直線(xiàn)x=1,直線(xiàn)BC與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)D

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;

(2)求直線(xiàn)BC的函數(shù)表達(dá)式;

(3)點(diǎn)Ey軸上一動(dòng)點(diǎn),CE的垂直平分線(xiàn)交CE于點(diǎn)F,交拋物線(xiàn)于P、Q兩點(diǎn),且點(diǎn)P在第三象限.

①當(dāng)線(xiàn)段PQ=AB時(shí),求tanCED的值;

②當(dāng)以點(diǎn)CD、E為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點(diǎn)B的坐標(biāo)為(1,0).拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).

(1)求拋物線(xiàn)的解析式;

(2)點(diǎn)P是直線(xiàn)AB上方拋物線(xiàn)上的一點(diǎn),過(guò)點(diǎn)P作PD垂直x軸于點(diǎn)D,交線(xiàn)段AB于點(diǎn)E,使PE=DE.

①求點(diǎn)P的坐標(biāo);

②在直線(xiàn)PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點(diǎn)D,過(guò)點(diǎn)DDEAC于點(diǎn)E

1)求證:DE是⊙O的切線(xiàn).

2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線(xiàn)的伴隨直線(xiàn)為.例如:拋物線(xiàn)的伴隨直線(xiàn)為,即y=2x1

1)在上面規(guī)定下,拋物線(xiàn)的頂點(diǎn)坐標(biāo)為   ,伴隨直線(xiàn)為   ,拋物線(xiàn)與其伴隨直線(xiàn)的交點(diǎn)坐標(biāo)為      ;

2)如圖,頂點(diǎn)在第一象限的拋物線(xiàn)與其伴隨直線(xiàn)相交于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸交于點(diǎn)C,D

①若∠CAB=90°,求m的值;

②如果點(diǎn)Px,y)是直線(xiàn)BC上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),PBC的面積記為S,當(dāng)S取得最大值時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案