作业宝如圖,邊長為1的正方形ABCD被兩條與邊平行的線段EF、GH分割為四個小矩形,EF與GH交于點P.
(1)若AG=AE,證明:AF=AH;
(2)若∠FAH=45°,證明:AG+AE=FH;
(3)若Rt△GBF的周長為1,求矩形EPHD的面積.

(1)證明:連接AH、AF.
∵ABCD是正方形,
∴AD=AB,∠D=∠B=90°.
∵ADHG與ABFE都是矩形,
∴DH=AG,AE=BF,
又∵AG=AE,
∴DH=BF.
在Rt△ADH與Rt△ABF中,
∵AD=AB,∠D=∠B=90°,DH=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.

(2)證明:將△ADH繞點A順時針旋轉(zhuǎn)90°到△ABM的位置.
在△AMF與△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.

(3)解:設(shè)BF=x,GB=y,則FC=1-x,AG=1-y,(0<x<1,0<y<1)
在Rt△GBF中,GF2=BF2+BG2=x2+y2
∵Rt△GBF的周長為1,
∴BF+BG+GF=x+y+=1
=1-(x+y)
即x2+y2=1-2(x+y)+(x+y)2
整理得2xy-2x-2y+1=0
∴xy-x-y=-,
∴矩形EPHD的面積S=PH•EP=FC•AG=(1-x)(1-y)=xy-x-y+1=-,
∴矩形EPHD的面積是
分析:(1)因為AG=AE?BF=DH.AB=AD,∠ABC=∠ADH?△ABF≌△ADH.(SAS)
(2)將△ADH繞點A順時針旋轉(zhuǎn)90°后,可得△AFH≌△AFM然后可求得結(jié)論.
(3)設(shè)BF=x,GB=y,根據(jù)線段之間的關(guān)系利用勾股定理求出xy的值.
點評:本題考查正方形的特殊性質(zhì),勾股定理以及正方形中的特殊三角形的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,邊長為
π2
的正△ABC,點A與原點O重合,若將該正三角形沿數(shù)軸正方向翻滾一周,點A恰好與數(shù)軸上的點A′重合,則點A′對應(yīng)的實數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點P依次落在點,,,,……的位置,則的橫坐標=_________.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年新人教版九年級(上)期中數(shù)學試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案