【題目】如圖,,已知中,,,的頂點、分別在邊、上,當(dāng)點在邊上運動時,隨之在上運動,的形狀始終保持不變,在運動的過程中,點到點的最小距離為( )
A. 5 B. 7 C. 12 D.
【答案】B
【解析】
作CH⊥AB于H,連接OH,如圖,根據(jù)等腰三角形的性質(zhì)得AH=BH=AB=5,再利用勾股定理計算出CH=12,接著根據(jù)直角三角形斜邊上的中線性質(zhì)得OH=AB=5,則利用三角形三邊的關(guān)系得到OC≥CH-OH(當(dāng)點C、O、H共線時取等號),從而得到OC的最小值.
作CH⊥AB于H,連接OH,如圖,
∵AC=BC=13,
∴AH=BH=AB=5,
在Rt△BCH中,CH==12,
∵H為AB的中點,
∴OH=AB=5,
∵OC≥CH-OH(當(dāng)點C、O、H共線時取等號),
∴OC的最小值為12-5=7.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C分別在x、y軸的正半軸上,頂點B的坐標(biāo)為(4,2)點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù) (k>0,x>0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN.
(1)當(dāng)點M是邊BC的中點時,求反比例函數(shù)的表達式;
(2)在點M的運動過程中,試證明:是一個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)團中央“號召全國每位團員,少先隊員捐一瓶水”的倡議,我校師生積極開展了“情系西南災(zāi)區(qū)”的捐款活動.某班名同學(xué)捐款的數(shù)額分別是(單位:元):,,,,,.則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )元.
A. 5,5 B. 10,5
C. 10,7.5 D. 7.5,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角三角形ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校到- -家文具店給九年級學(xué)生購買考試用文具包,該文具店規(guī)一次購買個以上,可享受八折優(yōu)惠.若給九年級學(xué)生每人購買一個,則不能享受八折優(yōu)惠,需付款元;若再多買個就可享受八折優(yōu)惠,并且同樣只需付款元.求該校九年級學(xué)生的總?cè)藬?shù). (列分式方程解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的直徑,,、分別與圓相交于、,那么下列等式中一定成立的是( )
A. AEBF=AFCF B. AEAB=AOAD'
C. AEAB=AFAC D. AEAF=AOAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結(jié)論:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF.
其中正確的結(jié)論個數(shù)有. ( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由我國完全自主設(shè)計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗任務(wù).如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程時,配方有錯誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣)2=
D.3x2﹣4x﹣2=0化為(x﹣)2=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com