【題目】如圖,四邊形ABCO是平行四邊形,點C在x軸的負半軸上,AO=2cm,AB=4cm,∠BAO=60°,將ABCO繞點A逆時針旋轉(zhuǎn)60°,得到對應(yīng)的ADEF,解答下列問題:
(1)畫出旋轉(zhuǎn)后的ADEF(不寫作法,不證明,保留作圖痕跡);
(2)求ABCO旋轉(zhuǎn)過程中掃過的區(qū)域的面積.

【答案】
(1)解:如圖所示,ADEF即為所求;


(2)解:過點A作AG⊥x軸于點G,

∵AB∥OC,∠BAO=60°,

∴∠AOG=60°,

∴OG= AO=1,AG=AOsin60°=

∴S平行四邊形ABCO=ABAG=4

在Rt△ACG中,AC2=AG2+CG2=( 2+(4+1)2=28,

∴S扇形ACE= π×AC2= ,

ABCO旋轉(zhuǎn)過程中掃過的區(qū)域的面積=S平行四邊形ABCO+S扇形ACE=4 +


【解析】(1)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出旋轉(zhuǎn)后的ADEF即可;(2)過點A作AG⊥x軸于點G,根據(jù)銳角三角函數(shù)的定義得出OG與AG的長,再由∴ABCO旋轉(zhuǎn)過程中掃過的區(qū)域的面積=S平行四邊形ABCO+S扇形ACE即可得出結(jié)論.
【考點精析】本題主要考查了平行四邊形的性質(zhì)和扇形面積計算公式的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】【閱讀】
如圖1,在平面直角坐標系xOy中,已知點A(a,0)(a>0),B(2,3),C(0,3).過原點O作直線l,使它經(jīng)過第一、三象限,直線l與y軸的正半軸所成角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].

(1)【理解】
若點D與點A重合,則這個操作過程為FZ[ , ];
(2)【嘗試】
若點D恰為AB的中點(如圖2),求θ;

(3)經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形0ABC的邊AB上,求出a的值;若點E落在四邊形0ABC的外部,直接寫出a的取值范圍;
(4)【探究】
經(jīng)過FZ[θ,a]操作后,作直線CD交x軸于點G,交直線AB于點H,使得△ODG與△GAH是一對相似的等腰三角形,直接寫出FZ[θ,a].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點C在 上,CD⊥OA,垂足為點D,當△OCD的面積最大時,圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A是函數(shù)y1= (x<0)圖象上一點,AO的延長線交函數(shù)y2= (x>0,k<0)的y2圖象于點B,BC⊥x軸,若SABC= ,求函數(shù)y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】位于合肥濱湖新區(qū)的渡江戰(zhàn)役紀念館,實物圖如圖1所示,示意圖如圖2所示.某學校數(shù)學興趣小組通過測量得知,紀念館外輪廓斜坡AB的坡度i=1: ,底基BC=50m,∠ACB=135°,求館頂A離地面BC的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年中考,阜陽市某區(qū)計劃在4月中旬的某個周二至周四這3天進行理化加試.王老師和朱老師都將被邀請當監(jiān)考老師,王老師隨機選擇2天,朱老師隨機選擇1天當監(jiān)考老師.
(1)求王老師選擇周二、周三這兩天的概率是多少?
(2)求王老師和朱老師兩人同一天監(jiān)考理化加試的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論: ①它的圖象與x軸有兩個交點;
②如果當x≤﹣1時,y隨x的增大而減小,則m=﹣1;
③如果將它的圖象向左平移3個單位后過原點,則m=1;
④如果當x=2時的函數(shù)值與x=8時的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是 . (把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2+bx+c與x軸相交于點A,B(4,0),與y軸相交于點C,直線y=﹣x+3經(jīng)過點C,與x軸相交于點D.

(1)求拋物線的解析式;
(2)點P為第一象限拋物線上一點,過點P作x軸的垂線,垂足為點E,PE與線段CD相交于點G,過點G作y軸的垂線,垂足為點F,連接EF,過點G作EF的垂線,與y軸相交于點M,連接ME,MD,設(shè)△MDE的面積為S,點P的橫坐標為t,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,過點B作直線GM的垂線,垂足為點K,若BK=OD,求:t值及點P到拋物線對稱軸的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是邊長為2的等邊三角形,邊AO在Y軸上,點B1、B2、B3…都在直線y= x上,則點A2016的坐標為( )

A.(2016 ,2018)
B.(2016 ,2016)
C.(2016,2016
D.(2016,2018

查看答案和解析>>

同步練習冊答案