如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.
【小題1】連結(jié),證明:

【小題2】如圖二,過點A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點P和點Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

【小題3】如圖三,過點A作半圓的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連結(jié)PA. 證明:PA是半圓的切線.

【小題1】

∴∠DF=FE.
.
【小題2】
解:如圖二,延長CAG,使AG=AQ,連接BGAE.

∵點E是半圓圓弧的中點,
AE=CE=3
AC為直徑
∴∠AEC=90°,
∴∠ACE=∠EAC =45°,AC==,
AQ是半圓的切線,
CAAQ,∴∠CAQ=90°,

【小題3】
(3) 證法一:如圖三,設(shè)直線FAPQ的垂足為M,過CCSMFS,過BBRMFR
連接DR、AD、DM.
 

 
FBC邊的中點,∴.
BR=CS,
由(2)已證∠CAQ=90°, AC=AQ,
∴∠2+∠3=90°
FMPQ, ∴∠2+∠1=90°,
∴∠1=∠3,
同理:∠2=∠4,

AM=CS,
AM=BR
同(2)可證AD=BD,ADB=∠ADP=90°,
∴∠ADB=∠ARB="90°," ∠ADP=∠AMP=90°
A、D、B、R四點在以AB為直徑的圓上,A、D、P、M四點在以AP為直徑的圓上,
且∠DBR+DAR=180°,
∴∠5="∠8," ∠6=∠7,
∵∠DAM+∠DAR=180°,
∴∠DBR=∠DAM
,
∴∠5=∠9,
∴∠RDM=90°,
∴∠5+∠7=90°,
∴∠6+∠8=90°,
∴∠PAB=90°,
PAAB,又AB是半圓直徑,


即 .
,
∴ 過點Q有兩條不同的直線同時與AF垂直.
這與在平面內(nèi)過一點有且僅有一條直線與已知直線垂直相矛盾,因此假設(shè)錯誤.
所以PA是是半圓的切線.解析:
p;【解析】略
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個半圓的圓心.F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.
(1)連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)如圖二,過點A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點P和點Q,連接PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;
(3)如圖三,過點A作半圓O2的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連接PA.證明:PA是半圓O1的切線.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.

1.連結(jié),證明:

 

 

2.如圖二,過點A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點P和點Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

 

 

3.如圖三,過點A作半圓的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連結(jié)PA. 證明:PA是半圓的切線.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.

(1)連結(jié),證明:;

(2)如圖二,過點A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點P和點Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

(3)如圖三,過點A作半圓的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連結(jié)PA. 證明:PA是半圓的切線

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.

(1)連結(jié),證明:
(2)如圖二,過點A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點P和點Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

(3)如圖三,過點A作半圓的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連結(jié)PA. 證明:PA是半圓的切線

查看答案和解析>>

同步練習(xí)冊答案