如圖,在平面直角坐標(biāo)系中,Rt△AOB的頂點坐標(biāo)分別為A(-2,0),O(0,0),B(0,2),把Rt△AOB繞著點O順時針旋轉(zhuǎn)90°得到Rt△BOC,(點A旋轉(zhuǎn)到點B的位置),拋物線y=ax2+bx+c(a≠0)經(jīng)過B,C兩點,與x軸的另一個交點為點D,頂點為點P,對稱軸為直線x=3,
(1)求該拋物線的解析式;
(2)連接BC,CP,PD,BD,求四邊形PCBD的面積;
(3)在拋物線上是否存在一點M,使得△MDC的面積等于四邊形PCBD的面積
1
3
?如果存在,求出點M的坐標(biāo);如果不存在,請說明理由.
(1)由題意得:B(0,2),C(2,0),對稱軸x=3,
設(shè)拋物線的解析式為y=a(x-3)2+k,
∵拋物線經(jīng)過B(0,2),C(2,0),
∴2=9a+k,0=a+k(2分)
解得:a=
1
4
,k=-
1
4

∴y=
1
4
(x-3)2-
1
4
,
∴拋物線的解析式為y=
1
4
x2-
3
2
x+2


(2)設(shè)對稱軸與x軸的交點為N,
由圖可知:CD=2,
S△BCD=
1
2
•CD•OB=
1
2
×2×2=2,
S△pCD=
1
2
CD•PN=
1
2
CD•|Py|=
1
2
×2×
1
4
=
1
4
,
∴S四邊形PCBD=S△BCD+S△pCD=2+
1
4
=
9
4


(3)假設(shè)存在一點M,使得△MDC的面積等于四邊形PCBD的面積
1
3

即:S△MCD=
1
3
S四邊形PCBD
1
2
CD•|My|=
9
4
×
1
3
,
|My|=
3
4
,(6分)
又∵點M在拋物線上,
∴|
1
4
x2-
3
2
x+2
|=
3
4

1
4
x2-
3
2
x+2
3
4
,
∴x2-6x+8=±3,
∴x2-6x+5=0或x2-6x+11=0,
由x2-6x+5=0,
得x1=5,x2=1,
由x2-6x+11=0,
∵b2-4ac=36-44=-8<0,
∴此方程無實根.
當(dāng)x1=5時,y1=
3
4
;當(dāng)x2=1時,y2=
3
4

∴存在一點M(5,
3
4
),或(1,
3
4
)使得△MDC的面積等于四邊形PCBD的面積
1
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=-
2
3
x2+bx+c
的圖象經(jīng)過B、C兩點.
(1)直接寫出點B、點C坐標(biāo);
(2)求該二次函數(shù)的解析式;
(3)結(jié)合函數(shù)的圖象探索,直接寫出不等式-
2
3
x2+bx+c≥0
的解集為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,點A是直線y=kx(k>0,且k為常數(shù))上一動點,以A為頂點的拋物線y=(x-h)2+m交直線y=kx于另一點E,交y軸于點F,拋物線的對稱軸交x軸于點B,交直線EF于點C.(點A,E,F(xiàn)兩兩不重合)
(1)請寫出h與m之間的關(guān)系;(用含的k式子表示)
(2)當(dāng)點A運動到使EF與x軸平行時(如圖2),求線段AC與OF的比值;
(3)當(dāng)點A運動到使點F的位置最低時(如圖3),求線段AC與OF的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點,與y軸交于點D(0,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的頂點C的坐標(biāo);
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在矩形ABCD中,AB=2,AD=4,以AB的垂直平分線為x軸,AB所在的直線為y軸,建立如圖所示的平面直角坐標(biāo)系.
(1)求點的坐標(biāo):A______,B______,C______,______,AD的中點E______;
(2)求以E為頂點,對稱軸平行于y軸,并且經(jīng)過點B,C的拋物線的解析式;
(3)求對角線BD與上述拋物線除點B以外的另一交點P的坐標(biāo);
(4)△PEB的面積S△PEB與△PBC的面積S△PBC具有怎樣的關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
1
2
x2+bx+c
與x軸交于A、B兩點(A點在B點左側(cè)),與y軸交于點C,對稱軸為直線x=
1
2
,OA=2
,OD平分∠BOC交拋物線于點D(點D在第一象限).
(1)求拋物線的解析式和點D的坐標(biāo);
(2)在拋物線的對稱軸上,是否存在一點P,使得△BPD的周長最?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(3)點M是拋物線上的動點,在x軸上是否存在點N,使A、D、M、N四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的M點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=6cm,AD=3cm,點E在邊DC上,且DE=4cm.動點P從點A開始沿著A?B?C?E的路線以2cm/s的速度移動,動點Q從點A開始沿著AE以1cm/s的速度移動,當(dāng)點Q移動到點E時,點P停止移動.若點P、Q同時從點A同時出發(fā),設(shè)點Q移動時間為t(s),P、Q兩點運動路線與線段PQ圍成的圖形面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以△ABC的邊AC為直徑的半圓交AB于D,三邊長a,b,c能使二次函數(shù)y=
1
2
(c+a)x2-bx+
1
2
(c-a)
的頂點在x軸上,且a是方程z2+z-20=0的一個根.
(1)證明:∠ACB=90°;
(2)若設(shè)b=2x,弓形面積S弓形AED=S1,陰影部分面積為S2,求(S2-S1)與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)b為何值時,(S2-S1)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+2x-3與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的頂點坐標(biāo);
(2)設(shè)直線y=x+3與y軸的交點是D,在線段AD上任意取一點E(不與A、D重合),經(jīng)過A、B、E三點的圓交直線AC于點F,試判斷△BEF的形狀.

查看答案和解析>>

同步練習(xí)冊答案