【題目】為進(jìn)一步緩解城市交通壓力,湖州推出公共自行車.公共自行車在任何一個網(wǎng)店都能實(shí)現(xiàn)通租通還,某校學(xué)生小明統(tǒng)計了周六校門口停車網(wǎng)點(diǎn)各時段的借、還自行車數(shù),以及停車點(diǎn)整點(diǎn)時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y的值表示8:00點(diǎn)時的存量,x=2時的y值表示9:00點(diǎn)時的存量…以此類推,他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.

時段

x

還車數(shù)

借車數(shù)

存量y

7:00﹣8:00

1

7

5

15

8:00﹣9:00

2

8

7

n

根據(jù)所給圖表信息,解決下列問題:

(1)m= ,解釋m的實(shí)際意義: ;

(2)求整點(diǎn)時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;

(3)已知10:00﹣11:00這個時段的還車數(shù)比借車數(shù)的2倍少4,求此時段的借車數(shù).

【答案】(1)13,7:00時自行車的存量;(2) y=﹣x2+x+13;(3)10:00﹣11:00這個時段的借車數(shù)為3輛.

【解析】

試題分析:(1)根據(jù)等量關(guān)系式:m+借車數(shù)﹣還車數(shù)=8:00的存量,列式求出m的值,并寫出實(shí)際意義;(2)先求出9點(diǎn)時自行車的存量,當(dāng)x=2時所對應(yīng)的y值,即求出n的值;再設(shè)一般式將三點(diǎn)坐標(biāo)代入求出解析式;(3)先分別計算9:00﹣10:00和10:00﹣11:00的自行車的存量,即當(dāng)x=3和x=4時所對應(yīng)的y值,設(shè)10:00﹣11:00這個時段的借車數(shù)為x,根據(jù)上一時段的存量+還車數(shù)﹣借車數(shù)=此時段的存量,列式求出x的值即可.

試題解析:解:(1)m+7﹣5=15,m=13,

則m的實(shí)際意義:7:00時自行車的存量;

故答案為:13,7:00時自行車的存量;

(2)由題意得:n=15+8﹣7=16,

設(shè)二次函數(shù)的關(guān)系式為:y=ax2+bx+c,

把(0,13)、(1,15)和(2,16)分別代入得:,

解得:,

y=﹣x2+x+13;

(3)當(dāng)x=3時,y=﹣×32+×3+13=16,

當(dāng)x=4時,y=﹣×42+×4=13=15,

設(shè)10:00﹣11:00這個時段的借車數(shù)為x,則還車數(shù)為2x﹣4,

根據(jù)題意得:16+2x﹣4﹣x=15,

x=3,

答:10:00﹣11:00這個時段的借車數(shù)為3輛.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、GF、H四點(diǎn),連接EG、GFFH、HE

1)如圖,試判斷四邊形EGFH的形狀,并說明理由;

2)如圖,當(dāng)EFGH時,四邊形EGFH的形狀是 ;

3)如圖,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是 ;

4)如圖,在(3)的條件下,若ACBD,試判斷四邊形EGFH的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一節(jié)小明外出爬山他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間,設(shè)他從山腳出發(fā)后所用的時間為t(min),所走的路程為s(m)st之間的函數(shù)關(guān)系如圖所示請回答下列問題:

(1)小明中途休息用了幾分鐘?

(2)小明休息前爬山的平均速度為多少米每分鐘?

(3)小明在上述過程中所走的路程為多少米?

(4)小明休息后爬山的平均速度為多少米每分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2+ab=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)觀察,思考下面一列數(shù)有哪些規(guī)律,﹣2,4,﹣8,16,﹣32,64,…然后填出下面兩空:(1)第7個數(shù)是;(2)第n個數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAB上一動點(diǎn)(不與AB重合),對角線AC,BD相交于點(diǎn)O,過點(diǎn)P分別作ACBD的垂線,分別交AC,BD于點(diǎn)E,F,交AD,BC于點(diǎn)M,N.下列結(jié)論:①△APE≌△AMEPM+PN=AC;PE2+PF2=PO2④△POF∽△BNF;當(dāng)PMN∽△AMP時,點(diǎn)PAB的中點(diǎn).其中正確的結(jié)論的個數(shù)有( 。﹤.

A.5 B.4 C.3 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:
(1)5(a2b﹣3ab2)﹣2(a2b﹣7ab2
(2)3x2﹣[7x﹣(4x﹣3)﹣2x2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,以AB為直徑的O交AC邊于點(diǎn)D,點(diǎn)E在BC上,連結(jié)BD,DE,CDE=ABD.

(1)證明:DE是O的切線;

(2)若BD=12,sinCDE=,求圓O的半徑和AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心在周圍數(shù)千米范圍內(nèi)形成氣旋風(fēng)暴有極強(qiáng)的破壞力.根據(jù)氣象觀測距沿海某城市A的正南方向220 km的B處有一臺風(fēng)中心,其中心最大風(fēng)力為12級每遠(yuǎn)離臺風(fēng)中心20 km,風(fēng)力就會減弱一級.該臺風(fēng)中心正以15 km/h的速度沿北偏東30°方向往C處移動,且臺風(fēng)中心風(fēng)力不變.若城市所受風(fēng)力達(dá)到或超過四級則稱受臺風(fēng)影響.該城市是否受到該臺風(fēng)的影響?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案