【題目】下列說法不能得到直角三角形的(

A.三個角度之比為 123 的三角形B.三個邊長之比為 345 的三角形

C.三個邊長之比為 81617 的三角形D.三個角度之比為 112 的三角形

【答案】C

【解析】

三角形內(nèi)角和180°,根據(jù)比例判斷A、D選項中是否有90°的角,根據(jù)勾股定理的逆定理判斷B、C選項中邊長是否符合直角三角形的關(guān)系.

A中,三個角之比為1:2:3,則這三個角分別為:30°60°、90°,是直角三角形;

D中,三個角之比為1:1:2,則這三個角分別為:45°、45°90°,是直角三角形;

B中,三邊之比為3:4:5,設(shè)這三條邊長為:3x、4x、5x,滿足:,是直角三角形;

C中,三邊之比為8:16:17,設(shè)這三條邊長為:8x、16x17x,,不滿足勾股定理逆定理,不是直角三角形

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強騎車從家到學(xué)校要經(jīng)過一段先上坡后下坡的路,在這段路上小強騎車的距離s(千米)與騎車的時間t(分鐘)之間的函數(shù)關(guān)系如圖所示,請根據(jù)圖中信息回答下列問題:

(1)小強去學(xué)校時下坡路長 千米;

(2)小強下坡的速度為 千米/分鐘;

(3)若小強回家時按原路返回,且上坡的速度不變,下坡的速度也不變,那么回家騎車走這段路的時間是 分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點EAO=1

1)求∠C的大;

2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元.為了擴大銷售,增加盈利,該店采取了降價措施.在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件.

1)若降價4元,則平均每天銷售數(shù)量為   件;

2)當(dāng)每件商品降價多少元時,該商店每天銷售利潤為1050元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是某兒童樂園為小朋友設(shè)計的滑梯平面圖.已知BC=4 m,AB=6 m,中間平臺寬度DE=1 m,EN,DM,CB為三根垂直于AB的支柱,垂足分別為N,M,B,EAB=31°,DFBC于點F,CDF=45°,DMBC的水平距離BM的長度.(結(jié)果精確到0.1 m.參考數(shù)據(jù):sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人買了相同數(shù)量的信封和信箋,甲每發(fā)一封信都只用1張信箋,乙每發(fā)一封信都要用3張信箋,結(jié)果甲用掉了所有的信封,但余下50張信箋,而乙用掉了所有的信箋,但余下50個信封.

(1)求甲乙兩人各買的信封和信箋的數(shù)量分別為多少?

(2)若甲乙兩人每發(fā)出一封信需郵費5元,求甲乙各用去多少元郵費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大家見過形如x+yz,這樣的三元一次方程,并且知道x3y4,z7就是適合該方程的一個正整數(shù)解,法國數(shù)學(xué)家費爾馬早在17世紀(jì)還研究過形如x2+y2z2的方程.

1)請寫出方程x2+y2z2的兩組正整數(shù)解:   

2)研究直角三角形和勾股數(shù)時,我國古代數(shù)學(xué)專著(九章算術(shù))給出了如下數(shù):am2n2),bmn,cm2+n2),(其中mn,m,n是奇數(shù)),那么,以ab,c為三邊的三角形為直角三角形,請你加以驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線試紙y=ax2+bx+cx軸交于點A,C,與y軸交于點B.已知點A坐標(biāo)為(8,0),點B(08),點D為(0,3),tanDCO=,直線AB和直線CD相交于點E.

求拋物線的解析式,并化成y=a(x-m)2+h的形式;

設(shè)拋物線的頂點為G,請在直線AB上方的拋物線上求點P的坐標(biāo),使得SABP=SABG.

M為直線AB上的一點,過點Mx軸的平行線分別交直線AB,CD于點M,N,連結(jié)DMDN,是否存在點M,使得DMN為等腰三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案