已知AB是⊙O的直徑,直線BC與⊙O相切于點B,∠ABC的平分線BD交⊙O于點D,AD的延長線交BC于點C.
(1)求∠BAC的度數(shù);
(2)求證:AD=CD.
考點:
切線的性質(zhì);等腰直角三角形;圓周角定理.
分析:
(1)由AB是⊙O的直徑,易證得∠ADB=90°,又由∠ABC的平分線BD交⊙O于點D,易證得△ABD≌△CBD,即可得△ABC是等腰直角三角形,即可求得∠BAC的度數(shù);
(2)由AB=CB,BD⊥AC,利用三線合一的知識,即可證得AD=CD.
解答:
解:(1)∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠CDB=90°,BD⊥AC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
,
∴△ABD≌△CBD(ASA),
∴AB=CB,
∵直線BC與⊙O相切于點B,
∴∠ABC=90°,
∴∠BAC=∠C=45°;
(2)證明:∵AB=CB,BD⊥AC,
∴AD=CD.
點評:
此題考查了切線的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.
科目:初中數(shù)學 來源: 題型:
7 | 2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
AB |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
EC |
CB |
1 |
4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com