【題目】在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖①,在△ABC中,∠A=2∠B,且∠A=60°.求證:a2=b(b+c)
(2)如圖②,在△ABC中,最大角∠A是最小角∠C的2倍,且c=7,b=8,求a的長.
(3)若一個三角形的一個內角等于另一個內角的2倍,我們則稱這樣的三角形為“倍角三角形”.問題(1)中的三角形是一個特殊的倍角三角形,那么對于任意的倍角△ABC,如圖③,∠A=2∠B,關系式a2=b(b+c)是否仍然成立?并證明你的結論.
【答案】(1)見解析;(2)a=;(3)關系式a2=b(b+c)仍然成立,見解析.
【解析】
(1)先證△ACB為直角三角形,知a=c,b=c,據此可得a2=(c)2=,b(b+c)=c(c+c)=,從而得出答案;
(2)延長CA至點D,使AD=AB,連接BD,證△CBD∽△DAB得,據此可得BD=,由∠C=∠D知a=BC=BD=;
(3)延長BA至D,使AD=AC=b,連結CD,證△ADC∽△CDB得,據此可得答案.
解:(1)證明:∵∠A=2∠B=60°,
∴∠B=30°,
則∠C=180°﹣∠A﹣∠B=90°,
∴△ACB為直角三角形,
在Rt△ACB中a=c,b=c,
所以a2=(c)2=,b(b+c)=c(c+c)=,
所以a2=b(b+c);
(2)如圖1,延長CA至點D,使AD=AB,連接BD,
則∠D=∠ABD=∠CAB=∠C,
∴△CBD∽△DAB,
∴,
∴BD2=ABCD=7×(8+7)=105,
∴BD=,
又∠C=∠D,
∴a=BC=BD=
(3)對于任意的倍角△ABC,∠A=2∠B,關系式a2=b(b+c)仍然成立,
如圖2,延長BA至D,使AD=AC=b,連結CD,
則∠CAB=2∠D,
∴∠B=∠D,BC=CD=a,
∴△ADC∽△CDB
∴,
即.
所以a2=b(b+c).
科目:初中數學 來源: 題型:
【題目】中考體育測評前,某校在初三15個班中隨機抽取了4個班的學生進行了摸底測評,將各班的滿分人數進行整理,繪制成如下兩幅統(tǒng)計圖.
(1)D班滿分人數共 人,扇形統(tǒng)計圖中,表示C班滿分人數的扇形圓心角的度數為 .
(2)這些滿分同學中有4名同學(3女1男)的跳繩動作十分標準,學校準備從這4名同學中任選2名同學作示范,請利用畫樹狀圖或列表法求選中1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春秋旅行社為吸引市民組團去天水灣風景區(qū)旅游,推出了如下收費標準:
某單位組織員工去天水灣風景區(qū)旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風景區(qū)旅游?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在半⊙中,是直徑,點是⊙上一點,點是的中點,于點,過點的切線交的延長線于點,連接,分別交于點,連接,關于下列結論:①;②;③點是的外心;④,其中結論正確的是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果記y==f(x),并且f(1)表示當x=1時y的值.即f(1)==;f()表示當x=時y的值,f()==…,那么f(﹣1)+f(﹣2)+f(﹣)+f(﹣3)+f(﹣)+…+f(﹣2019)+f(﹣)=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,舉行抽獎活動,并規(guī)定:顧客每購買100元的商品,就可隨機抽取一張獎劵,抽得獎券“紫氣東來”、“花開富貴”、“吉星高照”,就可以分別獲得100元、50元、20元的購物券,抽得“謝謝惠顧”不贈購物券;如果顧客不愿意抽獎,可以直接獲得購物券10元.小明購買了100元的商品,他看到商場公布的前10000張獎券的抽獎結果如下:
(1)求“紫氣東來”獎券出現(xiàn)的頻率;
(2)請你幫助小明判斷,抽獎和直接獲得購物券,哪種方式更合算?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度a為10 米),圍成一個長方形的花圃.設花圃的寬AB為x米,面積為S平方米.
(1)求S與x的函數關系式;寫出自變量x的取值范圍.
(2)怎樣圍才能使長方形花圃的面積最大?最大值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線(,是常數,且),經過點,,與軸交于點.
(Ⅰ)求拋物線的解析式;
(Ⅱ)若點是射線上一點,過點作軸的垂線,垂足為點,交拋物線于點,設點橫坐標為,線段的長為,求出與之間的函數關系式,并寫出相應的自變量的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當點在線段上時,設,已知,是以為未知數的一元二次方程(為常數)的兩個實數根,點在拋物線上,連接,,,且平分,求出值及點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解居民的環(huán)保意識,社區(qū)工作人員在某小區(qū)隨機抽取了若干名居民開展有獎問卷調查活動,并用得到的數據繪制了如下條形統(tǒng)計圖(得分為整數,滿分為10分,最低分為6分).請根據圖中信息,解答下列問題:
(Ⅰ)本次調查一共抽取了______名居民;
(Ⅱ)求本次調查獲取的樣本數據的平均數、眾數和中位數;
(Ⅲ)如果對該小區(qū)的名居民全面開展這項有獎問答活動,得分者設為一等獎,請你根據調查結果,幫社區(qū)工作人員估計需準備多少份一等獎獎品.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com