【題目】已知:直線AB與直線CD相交于點(diǎn)O,∠BOC=45°,
(1)如圖1,若EO⊥AB,求∠DOE的度數(shù);
(2)如圖2,若EO平分∠AOC,求∠DOE的度數(shù).
【答案】(1)135°;(2)112.5°
【解析】
試題分析:(1)根據(jù)對(duì)頂角相等求∠AOD,由垂直的性質(zhì)求∠AOE,根據(jù)∠DOE=∠AOD+∠AOE求解;
(2)由鄰補(bǔ)角的性質(zhì)求∠AOC,根據(jù)EO平分∠AOC求∠AOE,再由∠DOE=∠AOD+∠AOE求解.
解:(1)∵直線AB與直線CD相交,
∴∠AOD=∠BOC=45°.
∵EO⊥AB,
∴∠AOE=90°,
∴∠DOE=∠AOD+∠AOE=135°;
(2)∵直線AB與直線CD相交,
∴∠AOD=∠BOC=45°,∠AOC=135°,
∵EO平分∠AOC,
∴∠AOE=∠AOC=67.5°,
∴∠DOE=∠AOD+∠AOE=112.5°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某草莓種植農(nóng)戶(hù)喜獲豐收,共收獲草莓2000kg.經(jīng)市場(chǎng)調(diào)查,可采用批發(fā)、零售兩種銷(xiāo)售方式,這兩種銷(xiāo)售方式每kg草莓的利潤(rùn)如下表:
銷(xiāo)售方式 | 批發(fā) | 零售 |
利潤(rùn)(元/kg) | 6 | 12 |
設(shè)按計(jì)劃全部售出后的總利潤(rùn)為y元,其中批發(fā)量為xkg.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若零售量不超過(guò)批發(fā)量的4倍,求該農(nóng)戶(hù)按計(jì)劃全部售完后獲得的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在△ABC的邊AC上,要判斷△ABP∽△ACB,添加一個(gè)條件,不正確的是( )
A. ∠ABP=∠C B. ∠APB=∠ABC C. = D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[背景知識(shí)]數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美的結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上A點(diǎn)、B點(diǎn)表示的數(shù)為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,若a>b,則可簡(jiǎn)化為AB=a﹣b;線段AB的中點(diǎn)M表示的數(shù)為.
[問(wèn)題情境]
已知數(shù)軸上有A、B兩點(diǎn),分別表示的數(shù)為﹣10,8,點(diǎn)A以每秒3個(gè)單位的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)B以每秒2個(gè)單位向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
[綜合運(yùn)用]
(1)運(yùn)動(dòng)開(kāi)始前,A、B兩點(diǎn)的距離為 ;線段AB的中點(diǎn)M所表示的數(shù) .
(2)點(diǎn)A運(yùn)動(dòng)t秒后所在位置的點(diǎn)表示的數(shù)為 ;點(diǎn)B運(yùn)動(dòng)t秒后所在位置的點(diǎn)表示的數(shù)為 ;(用含t的代數(shù)式表示)
(3)它們按上述方式運(yùn)動(dòng),A、B兩點(diǎn)經(jīng)過(guò)多少秒會(huì)相遇,相遇點(diǎn)所表示的數(shù)是什么?
(4)若A,B按上述方式繼續(xù)運(yùn)動(dòng)下去,線段AB的中點(diǎn)M能否與原點(diǎn)重合?若能,求出運(yùn)動(dòng)時(shí)間,并直接寫(xiě)出中點(diǎn)M的運(yùn)動(dòng)方向和運(yùn)動(dòng)速度;若不能,請(qǐng)說(shuō)明理由.(當(dāng)A,B兩點(diǎn)重合,則中點(diǎn)M也與A,B兩點(diǎn)重合)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“豐收1號(hào)“小麥的試驗(yàn)田是邊長(zhǎng)為am(a>1)的正方形去掉一個(gè)邊長(zhǎng)為1m的正方蓄水池后余下的部分,“豐收2號(hào)”小麥的試驗(yàn)田是邊長(zhǎng)為(a﹣1)m的正方形,兩塊試驗(yàn)田的小麥都收獲了500kg,試說(shuō)明哪種小麥的單位面積產(chǎn)量高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是( )
A. 三角形的一個(gè)外角等于兩個(gè)內(nèi)角的和 B. 三角形具有穩(wěn)定性
C. 四邊形的內(nèi)角和與外角和相等 D. 角是軸對(duì)稱(chēng)圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸交于點(diǎn)O、M.對(duì)稱(chēng)軸為直線x=2,以O(shè)M為直徑作圓A,以O(shè)M的長(zhǎng)為邊長(zhǎng)作菱形ABCD,且點(diǎn)B、C在第四象限,點(diǎn)C在拋物線對(duì)稱(chēng)軸上,點(diǎn)D在y軸負(fù)半軸上;
(1)求證:4a+b=0;
(2)若圓A與線段AB的交點(diǎn)為E,試判斷直線DE與圓A的位置關(guān)系,并說(shuō)明你的理由;
(3)若拋物線頂點(diǎn)P在菱形ABCD的內(nèi)部且∠OPM為銳角時(shí),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com