(1)已知反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),求這個(gè)反比例函數(shù)的表達(dá)式.
(2)證明關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.

(1)解:由題意知,k=-2×3=-6,
所以這個(gè)反比例函數(shù)的表達(dá)式為y=-;

(2)證明:m2-8m+17=(m2-8m+16)-16+17=(m-4)2+1,
∵(m-4)2≥0,
∴(m-4)2+1≠0,
∴無論m取何實(shí)數(shù)關(guān)于x的方程(m2-8m+17)x2+2mx+1=0都是一元二次方程.
分析:(1)把已知點(diǎn)的坐標(biāo)代入可求出k值,即得到反比例函數(shù)的解析式;
(2)要證明無論m取何實(shí)數(shù)這個(gè)方程都是一元二次方程,只要說明無論m為什么值時(shí)m2-8m+17的值都不是0,可以利用配方法來證明.
點(diǎn)評(píng):本題考查的是用待定系數(shù)法求反比例函數(shù)的解析式,這是中學(xué)階段的重點(diǎn)內(nèi)容.同時(shí)考查了一元二次方程的概念.只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特別要注意a≠0的條件.這是在做題過程中容易忽視的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
k
x
圖象過第二象限內(nèi)的點(diǎn)A(-2,m)AB⊥x軸于B,Rt△AOB精英家教網(wǎng)面積為3,若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,-
3
2
),
(1)反比例函數(shù)的解析式為
 
,m=
 
,n=
 

(2)求直線y=ax+b的解析式;
(3)在y軸上是否存在一點(diǎn)P,使△PAO為等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點(diǎn)A(-2,3),求這個(gè)反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點(diǎn)(3,-4),則這個(gè)函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知反比例函數(shù)y1=
k
x
和二次函數(shù)y2=-x2+bx+c的圖象都過點(diǎn)A(-1,2)
(1)求k的值及b、c的數(shù)量關(guān)系式(用c的代數(shù)式表示b);
(2)若兩函數(shù)的圖象除公共點(diǎn)A外,另外還有兩個(gè)公共點(diǎn)B(m,1)、C(1,n),試在如圖所示的直角坐標(biāo)系中畫出這兩個(gè)函數(shù)的圖象,并利用圖象回答,x為何值時(shí),y1<y2
(3)當(dāng)c值滿足什么條件時(shí),函數(shù)y2=-x2+bx+c在x≤-
1
2
的范圍內(nèi)隨x的增大而增大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
kx
(k<0)的圖象上有兩點(diǎn)A(x1,y1)、B(x2,y2),且有x1<x2<0,則y1和y2的大小關(guān)系是
y1<y2
y1<y2

查看答案和解析>>

同步練習(xí)冊(cè)答案