【題目】已知a,b,c為正數(shù),滿足如下兩個條件:
a+b+c=32 ① ② 是否存在以 , 為三邊長的三角形?如果存在,求出三角形的最大內(nèi)角.

【答案】解:解法1:將①②兩式相乘,得 ,
即: ,
,
,
,
,

,
,
所以bc+a=0或c+ab=0或ca+b=0,
b+a=cc+a=bc+b=a
因此,以 , , 為三邊長可構成一個直角三角形,它的最大內(nèi)角為90°.
解法2:結合①式,由②式可得 ,
變形,得
又由①式得(a+b+c2=1024,即a2+b2+c2=1024﹣2(ab+bc+ca),
代入③式,得
abc=16(ab+bc+ca)﹣4096.(a﹣16)(b﹣16)(c﹣16)=abc﹣16(ab+bc+ca)+256(a+b+c)﹣163=﹣4096+256×32﹣163=0,
所以a=16或b=16或c=16.
結合①式可得b+a=cc+a=bc+b=a
因此,以 , , 為三邊長可構成一個直角三角形,它的最大內(nèi)角為90°.
【解析】解法一:根據(jù)已知,將兩式相乘,運用平方差公式、完全平方式、提取公因式將乘積分解為 .再根據(jù)每個因式都可能等于零,及勾股定理,判斷三角形為直角三角形.最大角度也就是90°
解法二:將①式變形代入,求出ab、c的值,再利用勾股定理,判斷三角形的為直角三角形.最大角度也就是90°.本題考查因式分解的應用.解決本題的關鍵是運用因式分解、等式變形求出a、b、c三角形三邊的關系.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】方程x22xk0有兩個相等的實數(shù)根,則k的值為( 。

A.1B.2C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(﹣2)4表示(
A.(﹣2)×4
B.(﹣2)×(﹣2)×(﹣2)×(﹣2)
C.﹣4×4
D.(﹣2)+(﹣2)+(﹣2)+(﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x , y , z均為正數(shù),且|x﹣4|+(y﹣3)2+ =0,若以x , y , z的長為邊長畫三角形,此三角形的形狀為三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課外閱讀是提高學生素養(yǎng)的重要途徑.某校為了解學生課外閱讀情況,隨機抽查了50名學生,統(tǒng)計他們平均每天課外閱讀時間t(小時).根據(jù)t的長短分為A,B,C,D四類,下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計圖表.請根據(jù)圖中提供的信息,解答下面的問題:
50名學生平均每天課外閱讀時間統(tǒng)計表

類別

時間t(小時)

人數(shù)

A

t<0.5

10

B

0.5≤t<1

20

C

1≤t<1.5

15

D

t≥1.5

a

(1)本次調(diào)查的樣本容量為多少?
(2)求表格中的a的值,并在圖中補全條形統(tǒng)計圖;
(3)該,F(xiàn)有1200名學生,請你估計該校共有多少名學生課外閱讀時間不少于1小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級在母親節(jié)倡議“感恩母親,做點家務”活動為了解同學們在母親節(jié)的周末做家務情況,年級隨機調(diào)查了部分同學,并用得到的數(shù)據(jù)制成如下不完整的統(tǒng)計表

1統(tǒng)計表中的 ;

2被調(diào)查同學做家務時間的中位數(shù)是 小時,平均數(shù)是 小時;

3年級要組織一次"感恩母親“的主題級會,級長想從報名的4位同學中隨機抽取2位同學在會上談體會據(jù)統(tǒng)計,報名的4人分別是母親節(jié)的周末做家務1小時的1人、做家務15小時的2人、做家務2小時的1人請你算算選上的2位同學恰好是一位做家務2小時和一位做家務15小時的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】試通過畫圖來判定,下列說法正確的是( )
A.一個直角三角形一定不是等腰三角形
B.一個等腰三角形一定不是銳角三角形
C.一個鈍角三角形一定不是等腰三角形
D.一個等邊三角形一定不是鈍角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

同步練習冊答案