【題目】小明家距離學(xué)校8千米,今天早晨,小明騎車上學(xué)途中,自行車出現(xiàn)故障,恰好路邊有便民服務(wù)點,幾分鐘后車修好了,他增加速度騎車到校.我們根據(jù)小明的這段經(jīng)歷畫了一幅圖象(如圖),該圖描繪了小明行的路程s與他所用的時間t之間的關(guān)系.

請根據(jù)圖象,解答下列問題:

(1)小明行了多少千米時,自行車出現(xiàn)故障?修車用了幾分鐘?

(2)小明共用了多少時間到學(xué)校的?

(3)如果自行車未出現(xiàn)故障,小明一直用修車前的速度行駛,那么他比實際情況早到或晚到多少分鐘?(結(jié)果精確到0.1)

【答案】13千米;5分鐘;(230分鐘;(3)他比實際情況早到3.3分鐘.

【解析】

1)根據(jù)自行車出現(xiàn)故障后路程s不變解答;修車的時間等于路程不變的時間;

2)路程等于8千米時對應(yīng)的橫軸的時間即為用的時間;

3)先求出修車前的速度,再求出未出故障需用的時間,然后與實際情況的時間比較即可進(jìn)行判斷.

解:(1)由圖可知,小明行了3千米時,自行車出現(xiàn)故障,

修車用了15105(分鐘);

2)由圖象可知:小明共用了30分鐘到學(xué)校;

3)修車前速度是:3÷10千米/分,

若自行車未出現(xiàn)故障,小明一直用修車前的速度行駛需用時:(分鐘),

(分鐘);

答:他比實際情況早到3.3分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D, AC交⊙O于點E,∠BAC=45°。

(1)求∠EBC的度數(shù);
(2)求證:BD=CD。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列推理說明:

如圖,已知B+∠BCD=180°,B=∠D.求證:E=∠DFE

證明:∵∠B+∠BCD=180°(  。,

ABCD    

∴∠B=    

∵∠B=∠D( 已知。,

∴ ∠ = ( 等量代換。

ADBE   

∴∠E=∠DFE   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三邊的中線AD、BE、CF的公共點為G,若S△ABC=12,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫縱坐標(biāo)分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,02,02,11,11,22,2,根據(jù)這個規(guī)律,第2019個點的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=60°,BC=2,CD△ABC的一條高線.若E,F(xiàn)分別是CDBC上的動點,則BE+EF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,∠A90°,EAD邊的中點,CE平分∠BCD

1)求證:BE平分∠ABC

2)若AB2,CD1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知點A、點B是直線上的兩點,AB =12厘米,點C在線段AB上,且AC=8厘米點P、點Q是直線上的兩個動點,點P的速度為1厘米秒,點Q的速度為2厘米/秒P、Q分別從點C、點B同時出發(fā),在直線上運動,則經(jīng)過 秒時線段PQ的長為5厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.

下面有三個推斷:
①當(dāng)投擲次數(shù)是500時,計算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機(jī)模擬實驗,則當(dāng)投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A.①
B.②
C.①②
D.①③

查看答案和解析>>

同步練習(xí)冊答案