如圖,已知直線y=
1
2
x
與雙曲線y=
k
x
(k>0)
交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.精英家教網(wǎng)
(1)求k的值;
(2)根據(jù)圖象寫出正比例函數(shù)的值大于反比例函數(shù)的值時,x的取值范圍.
(3)若雙曲線y=
k
x
(k>0)
上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積.
分析:(1)先把點(diǎn)A的橫坐標(biāo)為4代入直線y=
1
2
x,得A點(diǎn)坐標(biāo)為(4,2),然后把A點(diǎn)坐標(biāo)為(4,2)代入雙曲線y=
k
x
(k>0)
即可得到k的值;
(2)先確定B點(diǎn)坐標(biāo),這樣直線被A、O、B三點(diǎn)分成四段,然后在四個區(qū)間討論正比例函數(shù)的值與反比例函數(shù)值的大小即可;
(3)過A、C分別作y軸的垂線,垂足分別為E、F,先確定C點(diǎn)坐標(biāo),然后根據(jù)S△AOC=S梯形ACEF+S△AOF-S△CEO,利用三角形的面積公式和梯形的面積公式計(jì)算即可.
解答:解:(1)把點(diǎn)A的橫坐標(biāo)為4代入直線y=
1
2
x,得y=2,即A點(diǎn)坐標(biāo)為(4,2),
把A點(diǎn)坐標(biāo)為(4,2)代入雙曲線y=
k
x
(k>0)
得,k=4×2=8,
即k的值為8;

(2)∵A、B兩點(diǎn)關(guān)于原點(diǎn)對稱,
∴B點(diǎn)坐標(biāo)為(-4,-2),
觀察圖象得,當(dāng)-4<x<0或x>4時,正比例函數(shù)的值大于反比例函數(shù)的值.精英家教網(wǎng)

(3)如圖,過A、C分別作y軸的垂線,垂足分別為E、F,
把C的縱坐標(biāo)8代入y=
8
x
,得C點(diǎn)坐標(biāo)為(1,8)
∴S△AOC=S梯形ACEF+S△AOF-S△CEO
=
1
2
(1+4)×(8-2)+
1
2
×4×2-
1
2
×8×1
=15,
即△AOC的面積為15.
點(diǎn)評:本題考查了點(diǎn)在函數(shù)圖象上,則點(diǎn)的橫縱坐標(biāo)滿足圖象的解析式.也考查了觀察圖象的能力以及不規(guī)則幾何圖形面積的計(jì)算方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案