【題目】把下列各數(shù)分別填入相應(yīng)的集合里:0,-3.14,-(10),,-4,15%,0.3,,10.01001000100001…

非負(fù)整數(shù)集合:{ …}

正分?jǐn)?shù)集合:{ …}

無理數(shù)集合:{ …}

【答案】非負(fù)整數(shù)集合:{0、-(10) }

正分?jǐn)?shù)集合:{、15%、0.3}

無理數(shù)集合:{、10.01001000100001…}

【解析】

利用非負(fù)整數(shù)、正分?jǐn)?shù)、無理數(shù)的定義判斷即可.

非負(fù)整數(shù):零和正整數(shù).

正分?jǐn)?shù): 正分?jǐn)?shù)指的是在有理數(shù)的集合中,大于0的分?jǐn)?shù)叫做正分?jǐn)?shù).

無理數(shù):無理數(shù)是實數(shù)中不能精確地表示為兩個整數(shù)之比的數(shù),即無限不循環(huán)小數(shù).

非負(fù)整數(shù)集合:{0、-(10) }

正分?jǐn)?shù)集合:{、15%、0.3、}

無理數(shù)集合:{、10.01001000100001…}

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線過A、B兩點。(1)求這個拋物線的解析式;(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N。求當(dāng)t 取何值時,MN有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請從以下兩個小題中任選一題作答,若多選,則按第一題計分.

A)兒童節(jié)期間,文具商店搞促銷活動,同時購買一個書包和一個文具盒可以打8折優(yōu)惠,能比標(biāo)價省13.2元,已知書包標(biāo)價比文具盒標(biāo)價的3倍少6元.那么設(shè)一個文具盒標(biāo)價為x元,依據(jù)題意列方程得________

B)用科學(xué)記算器計算: ________(計算結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級數(shù)學(xué)興趣小組的同學(xué)進行社會實踐活動時,想利用所學(xué)的解直角三角形的知識測量某塔的高度,他們先在點用高米的測角儀測得塔頂的仰角為然后沿方向前行m到達(dá)點,處測得塔頂的仰角為.請根據(jù)他們的測量數(shù)據(jù)求此塔的高.結(jié)果精確到m,參考數(shù)據(jù) ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy拋物線y=mx22mx3 m≠0y軸交于點A,其對稱軸與x軸交于點B頂點為C

1求點A和點B的坐標(biāo);

2ACB=45°求此拋物線的表達(dá)式;

32的條件下垂直于軸的直線與拋物線交于點Px1y1Qx2,y2),與直線AB交于點Nx3,y3),x3x1x2,結(jié)合函數(shù)的圖象,直接寫出x1+x2+x3的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)在數(shù)軸上表示下列各數(shù):0,–25,,–2+5,

2)將上列各數(shù)用“<”連接起來:___________ _____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦CD⊥AB于點E,AM是△ACD的外角∠DAF的平分線.

(1)求證:AM是O的切線;

(2)若∠D = 60°,AD = 2,射線CO與AM交于N點,請寫出求ON長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確保OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達(dá),雷達(dá)的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)

(1)若三艘軍艦要對OBC海域進行無盲點監(jiān)控,則雷達(dá)的有效探測半徑r至少為多少海里?

(2)現(xiàn)有一艘敵艦A從東部接近OBC海域,在某一時刻軍艦B測得A位于北偏東60°方向上,同時軍艦C測得A位于南偏東30°方向上,求此時敵艦A離OBC海域的最短距離為多少海里?

(3)若敵艦A沿最短距離的路線以20海里/小時的速度靠近OBC海域,我軍軍艦B沿北偏東15°的方向行進攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點DAC上,點F、G分別在AC、BC的延長線上,CE平分∠ACBBD于點O,且∠EOD+OBF180°,∠F=∠G.則圖中與∠ECB相等的角有( )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

同步練習(xí)冊答案