如圖,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,過D點作DE∥AC交BC的延長線于E點.
(1)求證:四邊形ACED是平行四邊形;
(2)求證:三角形BDE是等腰直角三角形。
見解析
【解析】
試題分析:(1)根據(jù)平行四邊形的定義即可判定;
(2)先根據(jù)等腰梯形的對角線相等可得AC=BD,再根據(jù)平行四邊形的對邊相等可得DE=AC=DB,即可證得結(jié)論。
(1)根據(jù)AD∥BC,DE∥AC可得四邊形ACED是平行四邊形;
(2)因為梯形ABCD是等腰梯形,
所以AC=BD,
又因為四邊形ACED是平行四邊形
所以DE=AC=DB,
又因為AC⊥BD,
所以∠BDE=90°,
所以△BDE是等腰直角三角形。
考點:本題考查的是等腰梯形的性質(zhì),平行四邊形的判定和性質(zhì),等腰直角三角形的判定
點評:解答本題的關(guān)鍵是掌握兩組對邊互相平行的四邊形是平行四邊形,等腰梯形的對角線相等。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com