作業(yè)寶如圖,已知△ABC中,AB=AC,D是CB延長(zhǎng)線上一點(diǎn),∠ADB=60°,E是AD上一點(diǎn),且有DE=DB.求證:AE=BE+BC.

證明:延長(zhǎng)DC到F,使CF=BD,連接AF,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABD=∠ACF,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(SAS),
∴AD=AF,
又∵∠ADB=60°,
∴△ADF是等邊三角形,
∴AD=DF,
∵AD=AE+DE,DF=DB+BC+CF,
又∵DE=DB,且∠ADB=60°
∴△DEB是等邊三角形.
∴DE=BE=DB=CF,
∴AE+DE=BE+BC+DE,
∴AE=BE+BC.
分析:首先延長(zhǎng)DC到F,使CF=BD,連接AF,易得△ABD≌△ACF,繼而可得△ADF是等邊三角形,△DEB是等邊三角形.則可證得結(jié)論.
點(diǎn)評(píng):此題考查了等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過(guò)A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案