【題目】如圖拋物線y=ax2+bx,過點(diǎn)A(4,0)和點(diǎn)B(6,2),四邊形OCBA是平行四邊形,點(diǎn)M(t,0)為x軸正半軸上的點(diǎn),點(diǎn)N為射線AB上的點(diǎn),且AN=OM,點(diǎn)D為拋物線的頂點(diǎn).

(1)求拋物線的解析式,并直接寫出點(diǎn)D的坐標(biāo);

(2)當(dāng)△AMN的周長(zhǎng)最小時(shí),求t的值;

(3)如圖②,過點(diǎn)MMEx軸,交拋物線y=ax2+bx于點(diǎn)E,連接EM,AE,當(dāng)△AME與△DOC相似時(shí).請(qǐng)直接寫出所有符合條件的點(diǎn)M坐標(biāo).

【答案】(1)y=x2x,點(diǎn)D的坐標(biāo)為(2,﹣);(2)t=2;(3)M點(diǎn)的坐標(biāo)為(2,0)或(6,0).

【解析】

(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點(diǎn)式得到點(diǎn)D的坐標(biāo);

(2)連接AC,如圖①,先計(jì)算出AB=4,則判斷平行四邊形OCBA為菱形,再證明AOCACB都是等邊三角形,接著證明OCM≌△ACN得到CM=CN,OCM=ACN,則判斷CMN為等邊三角形得到MN=CM,于是AMN的周長(zhǎng)=OA+CM,由于CMOA時(shí),CM的值最小,AMN的周長(zhǎng)最小,從而得到t的值;

(3)先利用勾股定理的逆定理證明OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當(dāng)時(shí),AME∽△COD,即|t-4|:4=|t2-t |:,當(dāng)時(shí),AME∽△DOC,即|t-4|:=|t2-t |:4,然后分別解絕對(duì)值方程可得到對(duì)應(yīng)的M點(diǎn)的坐標(biāo).

1)把A4,0)和B6,2)代入y=ax2+bx

,解得,

∴拋物線解析式為y=x2-x;

y=x2-x =-2) 2-

∴點(diǎn)D的坐標(biāo)為(2,-);

2)連接AC,如圖①,

AB==4,

OA=4

∴平行四邊形OCBA為菱形,

OC=BC=4

C2,2),

AC==4,

OC=OA=AC=AB=BC,

∴△AOC和△ACB都是等邊三角形,

∴∠AOC=COB=OCA=60°,

OC=AC,OM=AN

∴△OCM≌△ACN,

CM=CN,∠OCM=ACN

∵∠OCM+ACM=60°,

∴∠ACN+ACM=60°

∴△CMN為等邊三角形,

MN=CM,

∴△AMN的周長(zhǎng)=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,

當(dāng)CMOA時(shí),CM的值最小,△AMN的周長(zhǎng)最小,此時(shí)OM=2,

t=2;

3)∵C2,2),D2,-),

CD=,

OD=,OC=4,

OD2+OC2=CD2

∴△OCD為直角三角形,∠COD=90°,

設(shè)Mt,0),則Et,t2-t),

∵∠AME=COD,

∴當(dāng)時(shí),△AME∽△COD,即|t-4|4=|t2-t |,

整理得|t2-t|=|t-4|,

解方程t2-t =t-4)得t1=4(舍去),t2=2,此時(shí)M點(diǎn)坐標(biāo)為(2,0);

解方程t2-t =-t-4)得t1=4(舍去),t2=-2(舍去);

當(dāng)時(shí),△AME∽△DOC,即|t-4|=|t2-t |4,整理得|t2-t |=|t-4|,

解方程t2-t =t-4t1=4(舍去),t2=6,此時(shí)M點(diǎn)坐標(biāo)為(6,0);

解方程t2-t =-t-4)得t1=4(舍去),t2=-6(舍去);

綜上所述,M點(diǎn)的坐標(biāo)為(2,0)或(60).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次促銷活動(dòng)中,某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成份),并規(guī)定:顧客每購(gòu)買元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購(gòu)物券元.

(1)求每轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤所獲購(gòu)物券金額的平均數(shù);

(2)如果你在該商場(chǎng)消費(fèi)元,你會(huì)選擇轉(zhuǎn)轉(zhuǎn)盤還是直接獲得購(gòu)物券?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙,丙三種作物,分別在山腳,山腰和山頂三個(gè)試驗(yàn)田進(jìn)行試驗(yàn),每個(gè)試驗(yàn)田播種二十粒種子,農(nóng)業(yè)專家將每個(gè)試驗(yàn)田成活的種子個(gè)數(shù)統(tǒng)計(jì)如條形統(tǒng)計(jì)圖,如圖所示,下面有四個(gè)推斷:

①甲種作物受環(huán)境影響最小;②乙種作物平均成活率最高;

③丙種作物最適合播種在山腰;

④如果每種作物只能在一個(gè)地方播種,那么山腳,山腰和山頂分別播種甲,乙,丙三種作物能使得成活率最高.其中合理的是( 。

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F

1)求證:CF是⊙O的切線;

2)若∠F=30°EB=6,求圖中陰影部分的面積(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小李做摸球試驗(yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是試驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

200

300

500

800

1000

3000

摸到白球的次數(shù)m

63

124

178

302

488

600

1800

摸到白球的頻率

0.63

0.62

0.593

0.604

0.61

   

   

1)完成上表;

2)若從盒子中隨機(jī)摸出一個(gè)球,則摸到白球的概率P   ;(結(jié)果保留小數(shù)點(diǎn)后一位)

3)估算這個(gè)不透明的盒子里白球有多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)a使關(guān)于x的分式方程的解為正數(shù),使關(guān)于y的不等式組無解,則所有滿足條件的整數(shù)a的值之積是( 。

A. 360 B. 90 C. 60 D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣2,﹣1,0,1,2,3這六個(gè)數(shù)中,任取一個(gè)數(shù)作為a的值,恰好使得關(guān)于x、y的二元一次方程組有整數(shù)解,且方程ax2+ax+1=0有實(shí)數(shù)根的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角ABC中,AD是高,E,F分別是AB,AC中點(diǎn),EFADG,已知GF=1,AC= 6,DEG的周長(zhǎng)為10,則ABC的周長(zhǎng)為(

A. 27-3B. 28-3C. 28-4D. 29-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】指出下列問題中的總體、個(gè)體、樣本:

1)為了估計(jì)某塊玉米試驗(yàn)田里的單株平均產(chǎn)量,從中抽取株進(jìn)行實(shí)測(cè);

2)某學(xué)校為了了解學(xué)生完成課外作業(yè)的時(shí)間,從中抽樣調(diào)查了名學(xué)生完成課外作業(yè)的時(shí)間進(jìn)行分析.

查看答案和解析>>

同步練習(xí)冊(cè)答案