如圖1,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,點(diǎn)O是AC邊上一點(diǎn),連接BO交AD于F,OE⊥OB交BC邊于點(diǎn)E.
(1)求證:△ABF∽△COE;
(2)當(dāng)O為AC的中點(diǎn),時(shí),如圖2,求的值;
(3)當(dāng)O為AC邊中點(diǎn),時(shí),請直接寫出的值.

【答案】分析:(1)要求證:△ABF∽△COE,只要證明∠BAF=∠C,∠ABF=∠COE即可.
(2)作OH⊥AC,交AD的延長線于H,易證△ABF≌△COE,進(jìn)而證明△ABF∽△HOF,根據(jù)相似三角形的對應(yīng)邊的比相等,即可得出所求的值.同理可得(3)=n.
解答:(1)證明:∵AD⊥BC,
∴∠DAC+∠C=90°.
∵∠BAC=90°,
∴∠BAF=∠C.
∵OE⊥OB,
∴∠BOA+∠COE=90°,
∵∠BOA+∠ABF=90°,
∴∠ABF=∠COE.
∴△ABF∽△COE.

(2)解:過O作AC垂線交BC于H,則OH∥AB,
由(1)得∠ABF=∠COE,∠BAF=∠C.
∴∠AFB=∠OEC,
∴∠AFO=∠HEO,
而∠BAF=∠C,
∴∠FAO=∠EHO,
∴△OEH∽△OFA,
∴OF:OE=OA:OH
又∵O為AC的中點(diǎn),OH∥AB.
∴OH為△ABC的中位線,
∴OH=AB,OA=OC=AC,
,
∴OA:OH=2:1,
∴OF:OE=2:1,即=2;

(3)解:=n.
點(diǎn)評:本題難度中等,主要考查相似三角形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖2).
探究1:在運(yùn)動(dòng)過程中,四邊形BDG′G能否是菱形?若能,請求出此時(shí)x的值;若不能,請說明理由;
探究2:設(shè)在運(yùn)動(dòng)過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動(dòng),DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.
精英家教網(wǎng)
(1)當(dāng)AD=CD時(shí),求證:DE∥AC;
(2)探究:AD為何值時(shí),△BME與△CNE相似?
(3)探究:AD為何值時(shí),四邊形MEND與△BDE的面積相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點(diǎn).
(1)求線段AB的長;
(2)若一個(gè)扇形的周長等于(1)中線段AB的長,當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長,并驗(yàn)證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
說明:如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,可以從圖2、3中選取一個(gè),并分別補(bǔ)充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
(1)求AA1的長;
(2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長為
 
;
(3)在Rt△A2B2C中按上述操作,則AA3的長為
 
;
(4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長為
 

查看答案和解析>>

同步練習(xí)冊答案