【題目】當(dāng)﹣2≤x≤1時(shí),二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值3,則實(shí)數(shù)m的值為_____.
【答案】或﹣.
【解析】
求出二次函數(shù)對(duì)稱(chēng)軸為直線x=m,且開(kāi)口向下,再分m<2,2≤m≤1,m>1三種情況,根據(jù)二次函數(shù)的增減性列方程求解即可.
二次函數(shù)y=﹣(x﹣m)2+m2+1的對(duì)稱(chēng)軸為直線x=m,且開(kāi)口向下,
①m<﹣2時(shí),x=﹣2時(shí)二次函數(shù)有最大值,
此時(shí)﹣(﹣2﹣m)2+m2+1=3,
解得m=﹣,與m<﹣2矛盾,故此種情況不存在;
②當(dāng)﹣2≤m≤1時(shí),x=m時(shí),二次函數(shù)有最大值,
此時(shí),m2+1=3,
解得m=﹣或m=(舍去);
③當(dāng)m>1時(shí),x=1時(shí)二次函數(shù)有最大值,
此時(shí),﹣(1﹣m)2+m2+1=3,
解得m=.
綜上所述,m的值為或﹣.
故答案為:或﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與軸、軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D。
(1)求這條拋物線的解析式;
(2)畫(huà)出此拋物線;
(3)若拋物線與軸的另一個(gè)交點(diǎn)為E,求△ODE的面積;
(4)拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P使得△PAB的周長(zhǎng)最短。若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),將△CDE繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得到△C′D′E,則A,D′兩點(diǎn)距離的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)與原點(diǎn)重合,、分別在坐標(biāo)軸上,,,直線交,分別于點(diǎn),,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),.
(1)求反比例函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng)時(shí),的取值范圍;
(3)若點(diǎn)在軸上,且的面積與四邊形的面積相等,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB、BC的長(zhǎng)是關(guān)于x的方程x2﹣mx+﹣=0的兩個(gè)實(shí)數(shù)根.
(1)試說(shuō)明:無(wú)論m取何值方程總有兩個(gè)實(shí)數(shù)根
(2)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(3)若AB的長(zhǎng)為2,那么平行四邊形ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的內(nèi)切圓⊙O與BC、CA、AB分別相切于點(diǎn)D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,以點(diǎn)(3,0)為圓心,以6為半徑的圓分別交軸的正半軸于點(diǎn),交軸的負(fù)半軸交于點(diǎn),交軸的正半軸于點(diǎn) ,過(guò)點(diǎn)的直線交軸的負(fù)半軸于點(diǎn)(-9,0)
(1)求兩點(diǎn)的坐標(biāo);
(2)若拋物線經(jīng)過(guò)、兩點(diǎn),求此拋物線的解析式;
(3)求證:直線是⊙的切線;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱(chēng)軸是直線x=1.下列結(jié)論:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m為實(shí)數(shù)).其中結(jié)論正確的有_______.(填所以正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在半圓上,,過(guò)D作DE⊥BC于E.
(1)求證:DE是⊙O的切線.
(2)若DE=2CE=4,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com