【題目】RtABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動點,PEABE,PFACF,MEF中點,則AM的最小值為______

【答案】

【解析】

根據(jù)矩形的性質就可以得出,EFAP互相平分,且EF=AP,根據(jù)垂線段最短的性質可以得出APBC時,AP的值最小,即AM的值最小,由勾股定理求出BC,根據(jù)面積關系建立等式求出其解即可.

∵四邊形AEPF是矩形,

EF,AP互相平分.且EF=AP,

EFAP的交點就是M點.

∵當AP的值最小時,AM的值就最小,

∴當APBC時,AP的值最小,即AM的值最。

APBC=ABAC

APBC=ABAC

AB=3,AC=4,∠BAC=90°,

∴在RtABC中,由勾股定理,得BC==5

5AP=3×4

AP=.

AM=.

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖象,下列結論錯誤的是如圖是甲、乙兩車在某時段速度隨時間變化的圖象,下列結論錯誤的是( 。

A. 兩車到第3秒時行駛的路程相等B. 48秒內(nèi)甲的速度都大于乙的速度

C. 乙前4秒行駛的路程為48D. 08秒內(nèi)甲的速度每秒增加4/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8/千克,下面是他們在活動結束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果以13/千克的價格銷售,那么每天可售出240千克.

小紅:通過調(diào)查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系,每天銷售200千克以上.

(1)求每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關系式;

(2)該超市銷售這種水果每天獲取的利潤達到1040元,那么銷售單價為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知M是△ABC的邊AB的中點,DMC的延長線上一點,滿足∠ACM=BDM

(1)求證:AC=BD;

(2)若∠BMC=60°,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若化簡|1-x|-的結果為2x5,則x的取值范圍是( 。

A. x為任意實數(shù)B. 1x4 C. x1D. x4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,將ABD沿AD折疊得到AED,點E落在CD上,∠B=50°,∠C=30°

1)填空:∠BAD= 度;

2)求∠CAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,C=90,AC=6,BC=8,動點P從點A開始,沿邊AC向點C以每秒1個單位長度的速度運動,動點D從點A開始,沿邊AB向點B以每秒個單位長度的速度運動,且恰好能始終保持連結兩動點的直線PDAC,動點Q從點C開始,沿邊CB向點B以每秒2個單位長度的速度運動,連結PQ.P,D,Q分別從點A,C同時出發(fā),當其中一點到達端點時,另兩個點也隨之停止運動,設運動時間為t(t0).

(1)t為何值時,四邊形BQPD的面積為△ABC面積的?

(2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由;

(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由,并探究如何改變點Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是正方形ABCD的邊AB上的動點,但始終保持EFDE交BC于點F.

(1)求證:△ADE∽△BEF;

(2)若正方形的邊長為4,設AE=x,BF=y,求y與x之間的函數(shù)解析式;

(3)當x取何值時,y有最大值?并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算: 2)計算:

3)解方程:

4)解不等式組,并把它們的解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習冊答案