解:(1)∵△ABC和△CDE是等邊三角形,
∴∠ACB=∠D=∠ABC=∠ECD=60°,
∴AC∥ED,EC∥AB,
∴△ABG∽△CHG,△EFH∽△CGH,△BCG∽△BDF,
∴△ABG∽△EHF,
(2)∵△EFH∽△CGH,△BCG∽△BDF,
∴

=

,

,
∵點C是線段BD的中點,
∴

=

,
∵點F是DE的中點,
∴DF=EF,
∴

=

,
∴BG:GH:HF=3:1:2.
分析:(1)由△ABC和△CDE是等邊三角形,可得∠ACB=∠D=∠ABC=∠ECD=60°;又由同位角相等,兩直線平行,可得AC∥ED,EC∥AB;根據(jù)平行于三角形一邊的直線與三角形另兩邊或另兩邊的延長線所構成的三角形與原三角形相似,可得△ABG∽△CHG,△EFH∽△CGH,△BCG∽△BDF;又由相似三角形的傳遞性,可得△ABG∽△EHF;
(2)根據(jù)相似三角形的對應邊成比例,可得

=

,

;又由點C是線段BD的中點,點F是DE的中點,即可求得BG:GH:HF=3:1:2.
點評:此題考查了等邊三角形的性質,相似三角形的判定定理與性質.此題圖形比較復雜,解題時要注意仔細識圖,注意數(shù)形結合思想的應用.