【題目】李老師為了了解所教班級學生完成數(shù)學課前預習的具體情況,對本班部分學生進行了為期半個月的跟蹤調查,他將調查結果分為四類,A:很好;B:較好;C:一般;D:較差.并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)李老師一共調查了多少名同學?
(2)C類女生有3名,D類男生有1名,將圖1條形統(tǒng)計圖補充完整;
(3)為了共同進步,李老師想從被調查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

【答案】
(1)解:(6+4)÷50%=20.所以李老師一共調查了20名學生
(2)解:C類女生有3名,D類男生有1名;補充條形統(tǒng)計圖


(3)解:由題意畫樹形圖如下:

從樹形圖看出,所有可能出現(xiàn)的結果共有6種,且每種結果出現(xiàn)的可能性相等,所選

兩位同學恰好是一位男同學和一位女同學的結果共有3種.

所以P(所選兩位同學恰好是一位男同學和一位女同學)= =


【解析】(1)根據(jù)B類的人數(shù),男女共10人,所占的百分比是50%,即可求得總人數(shù);(2)根據(jù)百分比的意義求得C類的人數(shù),進而求得女生的人數(shù),同法求得D類中男生的人數(shù),即可補全直方圖;(3)利用樹狀圖法表示出出現(xiàn)的所有情況,進而利用概率公式求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設AE=x,DF=y,求y關于x的函數(shù)解析式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象向左平移5個單位或向右平移1個單位后都會經過原點,則此拋物線的對稱軸與x軸的交點的橫坐標是(
A.2
B.﹣2
C.3
D.﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A.a4÷a2=a2
B.(a+b)(a+b)=a2+b2
C. =
D.(﹣ 2=﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△POA1、△P2A1A都是等腰直角三角形,直角頂點P、P2在函數(shù)y= (x>0)的圖象上,斜邊OA1、A1A都在x軸上,則點A的坐標是(

A.(4,0)
B.(4 ,0)
C.(2,0)
D.(2 ,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+4的圖象經過A(﹣3,0),B(5,4),與y軸交于點C.

(1)求拋物線的解析式;
(2)線段AB在第一象限內的部分上有一動點P,過點P作y軸的平行線,交拋物線于點Q,是否存在點P使四邊形BPCQ的面積最大?如果存在,請求出點P的坐標及面積的最大值;如果不存在,說明理由;
(3)x軸正半軸上有一點D(1,0),線段AC上是否存在點M,使△AOM∽△ADC?如果存在,直接寫出點M的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線y=ax2﹣10ax+16a(a≠0)交x軸于A、B兩點,拋物線的頂點為D,對稱軸與x軸交于點H,且AB=2DH.

(1)求a的值;
(2)點P是對稱軸右側拋物線上的點,連接PD,PQ⊥x軸于點Q,點N是線段PQ上的點,過點N作NF⊥DH于點F,NE⊥PD交直線DH于點E,求線段EF的長;
(3)在(2)的條件下,連接DN、DQ、PB,當DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°時,作NC⊥PB交對稱軸左側的拋物線于點C,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ 與直線AB交于點A(﹣1,0),B(4, ),點D是拋物線A、B兩點間部分上的一個動點(不與點A、B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.

(1)求拋物線的表達式;
(2)設點D的橫坐標為m,△ADB的面積為S,求S關于m的函數(shù)關系式,并求出當S取最大值時的點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA勻速移動,當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動,DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).
解答下列問題:

(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,
設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關系式,是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案