在平面直角坐標(biāo)系中,把拋物線向上平移3個(gè)單位,再向左平移1個(gè)單位,則所得拋物線的解析式是   
.

試題分析:先求出原拋物線的頂點(diǎn)坐標(biāo),再根據(jù)向左平移橫坐標(biāo)減,向上平移縱坐標(biāo)加求出平移后的拋物線的頂點(diǎn)坐標(biāo),然后寫出拋物線解析式即可.
的頂點(diǎn)坐標(biāo)為(0,1),
∴向上平移3個(gè)單位,再向左平移1個(gè)單位后的拋物線的頂點(diǎn)坐標(biāo)為(-1,4),
∴所得拋物線的解析式為
考點(diǎn): 二次函數(shù)圖象.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:計(jì)算題

某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量箱與銷售價(jià)元/箱之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于的一元二次方程有實(shí)數(shù)根,為正整數(shù).
(1)求的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于的二次函數(shù)的圖象向下平移8個(gè)單位,求平移后的圖象的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)圖象的形狀與y=3x2相同,且它的頂點(diǎn)坐標(biāo)是,該解析式為             ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線軸相交于點(diǎn)(﹣1,0)、(3,0),與軸相交于點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn)(不與、重合),過點(diǎn)垂直于軸的直線與拋物線及線段分別交于點(diǎn),點(diǎn)軸正半軸上,=2,連接、

(1)求拋物線的解析式;
(2)當(dāng)四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo);
(3)過點(diǎn)的直線將(2)中的平行四邊形分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

.如圖,是二次函數(shù)y1=ax2+bx+c和一次函數(shù)y2=mx+n的圖象,觀察圖象寫出y2>y1時(shí),x的取值范圍__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=x2+2x-3的圖象的頂點(diǎn)坐標(biāo)是(   )
A.(-1,-4)B.(1,-4)C.(-1,-2)D.(1,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若直線在第二、四象限都無圖像,則拋物線(   )
A.開口向上,對(duì)稱軸是y軸B.開口向下,對(duì)稱軸平行于y軸
C.開口向上,對(duì)稱軸平行于y軸D.開口向下,對(duì)稱軸是y軸

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù),當(dāng)y<0時(shí),自變量x的取值范圍是( 。
A.1<x<3B.x<1C.x>3D.x<1或x>3

查看答案和解析>>

同步練習(xí)冊(cè)答案