【題目】如圖,在△ABC中,∠C=90°,點(diǎn)E是AC上的點(diǎn),且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,則AE等于(
A.3cm
B.4cm
C.6cm
D.9cm

【答案】C
【解析】解:∵DE垂直平分AB, ∴AE=BE,
∴∠2=∠A,
∵∠1=∠2,
∴∠A=∠1=∠2,
∵∠C=90°,
∴∠A=∠1=∠2=30°,
∵∠1=∠2,ED⊥AB,∠C=90°,
∴CE=DE=3cm,
在Rt△ADE中,∠ADE=90°,∠A=30°,
∴AE=2DE=6cm,
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解線(xiàn)段垂直平分線(xiàn)的性質(zhì)的相關(guān)知識(shí),掌握垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等,以及對(duì)含30度角的直角三角形的理解,了解在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式2x-6≥0的解集為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線(xiàn))交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱(chēng)軸為直線(xiàn)x=―2 .

(1)求該拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);

(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:

探究一:如圖1,設(shè)△PAD的面積為S,令Wt·S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒(méi)有,說(shuō)明理由;

探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與RtAOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,AB=AC,AD是△ABC的角平分線(xiàn),EF垂直平分AC,分別交AC,AD,AB于點(diǎn)E,M,F(xiàn).若∠CAD=20°,求∠MCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算
(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)
(2)
(3)( )×(﹣30)
(4)
(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙營(yíng)服裝店老板到廠(chǎng)家選購(gòu)A、B兩種型號(hào)的服裝,若購(gòu)進(jìn)A種型號(hào)服裝9件,B種型號(hào)服裝10件,需要1810元;若購(gòu)進(jìn)A種型號(hào)服裝12件,B種型號(hào)服裝8件,需要1880元,
(1)求A,B兩種型號(hào)的服裝每件分別多少元?
(2)若銷(xiāo)售1件A型服裝可獲利18元,銷(xiāo)售1件B型服裝可獲利30元,根據(jù)市場(chǎng)需求,服裝店老板決定,購(gòu)進(jìn)A型服裝的數(shù)量要比購(gòu)進(jìn)B型服裝數(shù)量的2倍還多4件,且A型服裝最多可購(gòu)進(jìn)28件,這樣服裝全部售出后,可使總的獲利不少于699元,問(wèn)有幾種進(jìn)貨方案如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型超市從生產(chǎn)基地以每千克a元的價(jià)格購(gòu)進(jìn)一種水果m千克,運(yùn)輸過(guò)程中重量損失了10%,超市在進(jìn)價(jià)的基礎(chǔ)上増加了30%作為售價(jià),假定不計(jì)超市其他費(fèi)用,那么售完這種水果,超市獲得的利潤(rùn)是_____(用含m、a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)已知m=1+ ,n=1﹣ ,求代數(shù)式m2+2mn﹣n2的值;
(2)已知x+ = ,求代數(shù)式x﹣ 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上點(diǎn)A和點(diǎn)B表示的教分別為﹣4和2,把點(diǎn)A向右平移( 。﹤(gè)單位長(zhǎng)度,可以使點(diǎn)A到點(diǎn)B的距離是2.

A. 2或4 B. 4或6 C. 6或8 D. 4或8

查看答案和解析>>

同步練習(xí)冊(cè)答案