【題目】如圖是在浦東陸家嘴明代陸深古墓中發(fā)掘出來的寶玉﹣﹣明白玉幻方.其背面有方框四行十六格,為四階幻方(從1到16,一共十六個(gè)數(shù)目,它們的縱列、橫行與兩條對(duì)角線上4個(gè)數(shù)相加之和均為34).小明探究后發(fā)現(xiàn),這個(gè)四階幻方中的數(shù)滿足下面規(guī)律:在四階幻方中,當(dāng)數(shù)a,b,c,d有如圖1的位置關(guān)系時(shí),均有a+b=c+d=17.如圖2,已知此幻方中的一些數(shù),則x的值為__.
【答案】1
【解析】
根據(jù)小明的發(fā)現(xiàn),將四階幻方分解為三階幻方進(jìn)行研究,右圖中給出數(shù)據(jù),在實(shí)線的三階區(qū)域內(nèi)有y右下角對(duì)應(yīng)的是17﹣y,在虛線的三階區(qū)域內(nèi),2對(duì)應(yīng)右下角的數(shù)是15,再根據(jù)每列和是34,即可求解.
解:如圖,根據(jù)小明的發(fā)現(xiàn),在實(shí)線的三階區(qū)域內(nèi)有y右下角對(duì)應(yīng)的是17﹣y,
在虛線的三階區(qū)域內(nèi),2對(duì)應(yīng)右下角的數(shù)是15,
在第四列中,四個(gè)數(shù)分別是x,x+y,17﹣y,15,
∴x+x+y+17﹣y+15=34,
∴x=1;
故答案為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過三點(diǎn).點(diǎn)是拋物線段上一動(dòng)點(diǎn)(不含端點(diǎn),與的延長線交于點(diǎn)
(1)求拋物線的解析式.
(2)當(dāng)時(shí),求點(diǎn)的坐標(biāo)。
(3)在(2)的條件下,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的3月15日是“國際消費(fèi)者權(quán)益日”,許多家居商城都會(huì)利用這個(gè)契機(jī)進(jìn)行打折促銷活動(dòng).甲賣家的A商品成本為600元,在標(biāo)價(jià)1000元的基礎(chǔ)上打8折銷售.
(1)現(xiàn)在甲賣家欲繼續(xù)降價(jià)吸引買主,問最多降價(jià)多少元,才能使利潤率不低于20%?
(2)據(jù)媒體爆料,有一些賣家先提高商品價(jià)格后再降價(jià)促銷,存在欺詐行為.乙賣家也銷售A商品,其成本、標(biāo)價(jià)與甲賣家一致,以前每周可售出50件,現(xiàn)乙賣家先將標(biāo)價(jià)提高2m%,再大幅降價(jià)24m元,使得A商品在3月15日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了 m%,這樣一天的利潤達(dá)到了20000元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黔東南州某中學(xué)為了解本校學(xué)生平均每天的課外學(xué)習(xí)實(shí)踐情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個(gè)等級(jí),設(shè)學(xué)生時(shí)間為t(小時(shí)),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)本次抽樣調(diào)查中,學(xué)習(xí)時(shí)間的中位數(shù)落在哪個(gè)等級(jí)內(nèi)?
(3)表示B等級(jí)的扇形圓心角α的度數(shù)是多少?
(4)在此次問卷調(diào)查中,甲班有2人平均每天課外學(xué)習(xí)時(shí)間超過2小時(shí),乙班有3人平均每天課外學(xué)習(xí)時(shí)間超過2小時(shí),若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的統(tǒng)計(jì)圖反映了2013﹣2018年中國城鎮(zhèn)居民人均可支配收入與人均消費(fèi)支出的情況.
根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是( 。
A.2013﹣2018年,我國城鎮(zhèn)居民人均可支配收入和人均消費(fèi)支出均逐年增加
B.2013﹣2018年,我國城鎮(zhèn)居民人均可支配收入平均每年增長超過2400元
C.從2015年起,我國城鎮(zhèn)居民人均消費(fèi)支出超過20000元
D.2018年我國城鎮(zhèn)居民人均消費(fèi)支出占人均可支配收入的百分比超過70%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的兩個(gè)圖形M和N,給出如下定義:若在圖形M上存在一點(diǎn)A,圖形N上存在兩點(diǎn)B,C,使得△ABC是以BC為斜邊且BC=2的等腰直角三角形,則稱圖形M與圖形N具有關(guān)系φ(M,N).
(1)若圖形X為一個(gè)點(diǎn),圖形Y為直線y=x,圖形X與圖形Y具有關(guān)系φ(X,Y),則點(diǎn),P2(1,1),P3(2,﹣2)中可以是圖形X的是 ;
(2)已知點(diǎn)P(2,0),點(diǎn)Q(0,2),記線段PQ為圖形X.
①當(dāng)圖形Y為直線y=x時(shí),判斷圖形X與圖形Y是否既具有關(guān)系φ(X,Y)又具有關(guān)系φ(Y,X),如果是,請(qǐng)分別求出圖形X與圖形Y中所有點(diǎn)A的坐標(biāo);如果不是,請(qǐng)說明理由;
②當(dāng)圖形Y為以T(t,0)為圓心,為半徑的⊙T時(shí),若圖形X與圖形Y具有關(guān)系φ(X,Y),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于P,Q兩點(diǎn)給出如下定義:若點(diǎn)P到兩坐標(biāo)軸的距離之和等于點(diǎn)Q到兩坐標(biāo)軸的距離之和,則稱P,Q兩點(diǎn)為同族點(diǎn).下圖中的P,Q兩點(diǎn)即為同族點(diǎn).
(1)已知點(diǎn)A的坐標(biāo)為(,1),
①在點(diǎn)R(0,4),S(2,2),T(2, )中,為點(diǎn)A的同族點(diǎn)的是 ;
②若點(diǎn)B在x軸上,且A,B兩點(diǎn)為同族點(diǎn),則點(diǎn)B的坐標(biāo)為 ;
(2)直線l: ,與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,
①M為線段CD上一點(diǎn),若在直線上存在點(diǎn)N,使得M,N兩點(diǎn)為同族點(diǎn),求n的取值范圍;
②M為直線l上的一個(gè)動(dòng)點(diǎn),若以(m,0)為圓心, 為半徑的圓上存在點(diǎn)N,使得M,N兩點(diǎn)為同族點(diǎn),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是【 】
A.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則甲組數(shù)據(jù)比乙組數(shù)據(jù)大
B.從1,2,3,4,5,中隨機(jī)抽取一個(gè)數(shù),是偶數(shù)的可能性比較大
C.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是3
D.若某種游戲活動(dòng)的中獎(jiǎng)率是30%,則參加這種活動(dòng)10次必有3次中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=2,BC=8,點(diǎn)P從點(diǎn)B出發(fā)沿折線BA﹣AD﹣DC勻速運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CD勻速運(yùn)動(dòng),點(diǎn)P與點(diǎn)Q的速度相同,當(dāng)二者相遇時(shí),運(yùn)動(dòng)停止,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com