【題目】一次函數(shù)y1=kx+3與正比例函數(shù)y2=-2x交于點(diǎn)A(-1,2).
(1)確定一次函數(shù)表達(dá)式;
(2)當(dāng)x取何值時(shí),y1<0?
(3)當(dāng)x取何值時(shí),y1>y2?
【答案】(1) k=1(2)當(dāng)x<-3,y1<0.(3)當(dāng)x>-1,y1>y2.
【解析】試題分析:(1)將點(diǎn)A(-1,2)代入y1=kx+3求得k值,即可得一次函數(shù)表達(dá)式;(2)根據(jù)函數(shù)的解析式,列出不等式,解不等式即可;(3)列出不等式解決即可.
試題解析:
(1)由已知,將點(diǎn)A(-1,2)代入y1=kx+3
2=-k+3
解得:k=1.
(2)由(1)得一次函數(shù)表達(dá)式為y1=x+3
令y1<0,得x+3<0
解得x<-3.
所以,當(dāng)x<-3,y1<0.
(3)x+3>-2x
解得x>-1,
所以,當(dāng)x>-1,y1>y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各式,其結(jié)果是4y2﹣1的是( )
A.(2y﹣1)2
B.(2y+1)(2y﹣1)
C.(﹣2y+1)(﹣2y+1)
D.(﹣2y﹣1)(2y+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解方程x2+3=4x,配方后的方程變?yōu)? )
A. (x-2)2=7 B. (x+2)2=1
C. (x-2)2=1 D. (x+2)2=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y= -x+2與y軸交于點(diǎn)A,點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為B,過(guò)點(diǎn)B作y軸的垂線l,直線l與直線y= -x+2交于點(diǎn)C.
(1)求點(diǎn)B、C的坐標(biāo);
(2)若直線y=2x+b與△ABC有兩個(gè)公共點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)等腰三角形的兩邊長(zhǎng)分別是5cm和6cm,那么此三角形的周長(zhǎng)是( )
A.15cm
B.16cm
C.17cm
D.16cm或17cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程(2a-4)x2+(3a+6)x+a-8=0沒(méi)有常數(shù)項(xiàng),則a的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按圖填空,并注明理由.
⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D
證明:過(guò)E點(diǎn)作EF∥AB(經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與這條直線平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代換).
⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過(guò)程填寫完整.
解:因?yàn)镋F∥AD(已知)
所以∠2=∠3.( )
又因?yàn)椤?=∠2,所以∠1=∠3.(等量代換)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因?yàn)椤螧AC=70°,所以∠AGD=110°.
圖⑴ 圖⑵
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com