某休閑廣場上要設計一個圓形的綠化區(qū)域,要求在這個圓內(nèi)要有三個邊長均為10 m的正方形的不同植物的種植區(qū)(三個正方形之間沒有重疊),請你設計不同的方案,并求圓形綠化區(qū)的半徑至少是多少?(不考慮其他因素,結(jié)果精確到0.1 m)

答案:
解析:

如圖有以下四種方案,四種方案的半徑依次為:16.0 m,14.1 m,14.1 m,12.9 m


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在某小區(qū)的休閑廣場有一個正方形花園ABCD,為了便于觀賞,要在AD、BC之間修一條小路,在AB、DC之間修另一條小路,使這兩條小路等長.設計師給出了以下幾種設計方案:
①如圖1,E是AD上一點,過A作BE的垂線,交BE于點O,交CD于點H,則線段AH、BE為等長的小路;
②如圖2,E是AD上一點,過BE上一點O作BE的垂線,交AB于點G,交CD于點H,則線段GH、BE為等長的小路;
③如圖3,過正方形ABCD內(nèi)任意一點O作兩條互相垂直的直線,分別交AD、BC于點E、F,交AB、CD于點G、H,則線段GH、EF為等長的小路;
根據(jù)以上設計方案,解答下列問題:
(1)你認為以上三種設計方案都符合要求嗎?
(2)要根據(jù)圖1完成證明,需要證明△
ABE
ABE
≌△
DAH
DAH
,進而得到線段
BE
BE
=
AH
AH

(3)如圖4,在正方形ABCD外面已經(jīng)有一條夾在直線AD、BC之間長為EF的小路,想在直線AB、DC之間修一條和EF等長的小路,并且使這條小路的延長線過EF上的點O,請畫草圖(加以論述),并給出詳細的證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆河北省廊坊市大城縣八年級下學期期末考試數(shù)學試卷(解析版) 題型:解答題

如圖,在某小區(qū)的休閑廣場有一個正方形花園ABCD,為了便于觀賞,要在AD、BC之間修一條小路,在AB、DC之間修另一條小路,使這兩條小路等長.設計師給出了以下幾種設計方案:

①如圖1,E是AD上一點,過A作BE的垂線,交BE于點O,交CD于點H,則線段AH、BE為等長的小路;

②如圖2,E是AD上一點,過BE上一點O作BE的垂線,交AB于點G,交CD于點H,則線段GH、BE為等長的小路;

③如圖3,過正方形ABCD內(nèi)任意一點O作兩條互相垂直的直線,分別交AD、BC于點E、F,交AB、CD于點G、H,則線段GH、EF為等長的小路;

根據(jù)以上設計方案,解答下列問題:

(1)你認為以上三種設計方案都符合要求嗎?

(2)要根據(jù)圖1完成證明,需要證明△    ≌△    ,進而得到線段  =  ;

(3)如圖4,在正方形ABCD外面已經(jīng)有一條夾在直線AD、BC之間長為EF的小路,想在直線AB、DC之間修一條和EF等長的小路,并且使這條小路的延長線過EF上的點O,請畫草圖(加以論述),并給出詳細的證明.

 

 

查看答案和解析>>

同步練習冊答案