【題目】(1)有理數(shù)、、在數(shù)軸上的對應(yīng)點如圖所示,化簡代數(shù)式:
(2)哈市某垃圾處理場一周處理生活垃圾任務(wù)為210噸,計劃每天處理30噸,由于各種原因,實際每天處理量與計劃相比有出入,某周七天的實際處理情況記錄如下:
+6;-3;+4;-1;+2;-5;0
①垃圾場這一周實際處理生活垃圾是多少噸?
②若該垃圾場實行計量工資,每處理一噸生活垃圾給300元,同時又規(guī)定超額處理一噸垃圾另外獎100元,完不成任務(wù)的少處理一噸另外扣100元,那么該場工人這一周的工資總額是多少元?
【答案】(1)-a-c;(2)①垃圾場這一周實際處理生活垃圾是213噸;②該場工人這一周的工資總額是64200元.
【解析】
(1)根據(jù)數(shù)軸上點的位置判斷出絕對值里邊式子的正負,原式利用絕對值的代數(shù)意義化簡,計算即可得到結(jié)果.
(2)①將實際每天處理量與計劃相比的增減總量求出,再加上7×30即可得到答案;
②先求出實際每天處理量,再根據(jù)工資標(biāo)準(zhǔn)計算工資即可.
(1)解:由有理數(shù)a、b、c在數(shù)軸上的對應(yīng)點可知
a<b<0<c
所以a-b<0,a+b<0,c-a>0
原式= -(a-b)+[-(a+b)] -(c-a)
=-a+b-a-b-c+a
=-a-c
(2)解:①6﹣3+4﹣1+2﹣5=3,
7×30+3=213(噸).
答:垃圾場這一周實際處理生活垃圾是213噸.
②(36×300+600)+(27×300﹣300)+(34×300+4×100)+(29×300﹣100)+(32×300+2×100)+(25×300﹣5×100)+30×300=64200(元).
或者213×300+3×100=64200(元).
答:該場工人這一周的工資總額是64200元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣5ax+c與坐標(biāo)軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點B在x軸上,AC=BC,過點B作BD⊥x軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.
(1)求拋物線的解析式及點D的坐標(biāo);
(2)當(dāng)△CMN是直角三角形時,求點M的坐標(biāo);
(3)試求出AM+AN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,FH⊥BE,交BD于點G,交BC于點H .下列結(jié)論:
①∠DBE=∠F;②∠F=∠BAC-∠C;
③2∠BEF=∠BAF+∠C;④∠BGH=∠ABE+∠C.其中正確的有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,完成解答過程.
(1),,,則 .
并且用含有的式子表示發(fā)現(xiàn)的規(guī)律 .
(2)根據(jù)上述方法計算:
(3)根據(jù)(1),(2)的方法,我們可以猜測下列結(jié)論:
(其中均為正整數(shù)),
并計算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:且、、分別是點、、在數(shù)軸上對應(yīng)的數(shù).
(1)求點與點的距離;
(2)若甲、乙兩個動點分別從、兩點同時出發(fā),沿數(shù)軸正方向運動,它們的速度分別是2和1(單位長度/秒),求甲追上乙時所用的時間;
(3)在(2)的條件下,甲動點向數(shù)軸正方向運動,乙動點向數(shù)軸負方向運動.當(dāng)甲動點開始運動時,丙動點以4個單位長度/秒的速度和甲動點同時從點向數(shù)軸正方向運動,當(dāng)丙動點遇到乙動點時立即返回向數(shù)軸負方向運動,當(dāng)遇到甲動點時也馬上返回,如此往復(fù)直到甲乙兩動點相遇則停止運動,設(shè)甲乙兩動點在點處相遇,求從開始到停止運動,丙動點走的總路程以及點對應(yīng)的數(shù)字.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在數(shù)軸上對應(yīng)的數(shù)為26,以原點O為圓心,OA為半徑作優(yōu)弧,使點B在O右下方,且tan∠AOB=,在優(yōu)弧上任取一點P,且能過P作直線l∥OB交數(shù)軸于點Q,設(shè)Q在數(shù)軸上對應(yīng)的數(shù)為x,連接OP.
(1)若優(yōu)弧上一段的長為13π,求∠AOP的度數(shù)及x的值;
(2)求x的最小值,并指出此時直線l與所在圓的位置關(guān)系;
(3)若線段PQ的長為12.5,直接寫出這時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=10,則△ADE周長是多少?為什么?
(2)若∠BAC=128°,則∠DAE的度數(shù)是多少?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com