(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為? [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當(dāng)m=-3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,);
②當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長度大于;
③當(dāng)m<0時(shí),函數(shù)在時(shí),y隨x的增大而減小;
④當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過x軸上一個(gè)定點(diǎn).
其中正確的結(jié)論有________?????? .(只需填寫序號(hào))
①②④.
【解析】
試題分析:因?yàn)楹瘮?shù)y=ax2+bx+c的特征數(shù)為[2m,1﹣m,﹣1﹣m];
①當(dāng)m=﹣3時(shí),y=﹣6x2+4x+2=﹣6(x﹣)2+,頂點(diǎn)坐標(biāo)是(,);此結(jié)論正確;
②當(dāng)m>0時(shí),令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得x=,x1=1,x2=,
|x2﹣x1|=>,所以當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長度大于,此結(jié)論正確;
③當(dāng)m<0時(shí),y=2mx2+(1﹣m)x+(﹣1﹣m) 是一個(gè)開口向下的拋物線,其對稱軸是:,在對稱軸的右邊y隨x的增大而減。?yàn)楫?dāng)m<0時(shí),=>,即對稱軸在x=右邊,因此函數(shù)在x=右邊先遞增到對稱軸位置,再遞減,此結(jié)論錯(cuò)誤;
④當(dāng)x=1時(shí),y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即對任意m,函數(shù)圖象都經(jīng)過點(diǎn)(1,0)那么同樣的:當(dāng)m=0時(shí),函數(shù)圖象都經(jīng)過同一個(gè)點(diǎn)(1,0),當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過同一個(gè)點(diǎn)(1,0),故當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過x軸上一個(gè)定點(diǎn)此結(jié)論正確.
根據(jù)上面的分析,①②④都是正確的,③是錯(cuò)誤的.
故答案是①②④.
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
1-a |
1 |
1-2 |
1 |
1-(-1) |
1 |
2 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com