(2013•舟山)如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為( 。
分析:先根據(jù)垂徑定理求出AC的長(zhǎng),設(shè)⊙O的半徑為r,則OC=r-2,由勾股定理即可得出r的值,故可得出AE的長(zhǎng),連接BE,由圓周角定理可知∠ABE=90°,在Rt△BCE中,根據(jù)勾股定理即可求出CE的長(zhǎng).
解答:解:∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8,
∴AC=
1
2
AB=4,
設(shè)⊙O的半徑為r,則OC=r-2,
在Rt△AOC中,
∵AC=4,OC=r-2,
∴OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,
∴AE=2r=10,
連接BE,
∵AE是⊙O的直徑,
∴∠ABE=90°,
在Rt△ABE中,
∵AE=10,AB=8,
∴BE=
AE2-AB2
=
102-82
=6,
在Rt△BCE中,
∵BE=6,BC=4,
∴CE=
BE2+BC2
=
62+42
=2
13

故選D.
點(diǎn)評(píng):本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
1
4
(x-m)2-
1
4
m2+m的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過(guò)點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)如圖,△ABC與△DCB中,AC與BD交于點(diǎn)E,且∠A=∠D,AB=DC.
(1)求證:△ABE≌DCE;
(2)當(dāng)∠AEB=50°,求∠EBC的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在邊AB、BC上,AE=BF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)小球P第一次碰到點(diǎn)E時(shí),小球P所經(jīng)過(guò)的路程為
6
5
6
5

查看答案和解析>>

同步練習(xí)冊(cè)答案