【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動(dòng)鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點(diǎn)B、C、D始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點(diǎn)C,D之間的距離是10厘米,張角∠CAB60°.

(1)求支點(diǎn)D到滑軌MN的距離(精確到1厘米)

(2)將滑塊A向左側(cè)移動(dòng)到A′,(在移動(dòng)過程中,托臂長(zhǎng)度不變,即ACAC′,BCBC)當(dāng)張角∠CA'B45°時(shí),求滑塊A向左側(cè)移動(dòng)的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.732.45,2.65)

【答案】1)支點(diǎn)D到滑軌MN的距離為23厘米;(2)滑塊A向左側(cè)移動(dòng)的距離是6厘米.

【解析】

1)過CCGABG,過DDHABH,解直角三角形頂點(diǎn)AGAC=10,CGAG=10,根據(jù)相似三角形的性質(zhì)得到DH

2)過C'C'SMNS,解直角三角形得到A'S=C'S=10,求得A'B=1010,根據(jù)線段的和差即可得到結(jié)論.

1)過CCGABG,過DDHABH

AC=20,∠CAB=60°,∴AGAC=10,CGAG=10

BC=BDCD=30,CGAB,DHAB,∴CGDH,∴△BCG∽△BDH,∴,∴,∴DH23(厘米);

∴支點(diǎn)D到滑軌MN的距離為23厘米;

2)過C'C'SMNS

A'C'=AC=20,∠C'A'S=45°,∴A'S=C'S=10,∴BS10,∴A'B=1010

BG10,∴AB=10+10,∴AA'=A'BAB6(厘米),∴滑塊A向左側(cè)移動(dòng)的距離是6厘米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=-x+2x軸、y軸分別交于點(diǎn)AC,拋物線y=-x2bxc過點(diǎn)A、C,且與x軸交于另一點(diǎn)B,在第一象限的拋物線上任取一點(diǎn)D,分別連接CDAD,作于點(diǎn)E

(1)求拋物線的表達(dá)式;

(2)ACD面積的最大值;

(3)CEDCOB相似,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A24),B11),C43).

1)請(qǐng)畫出ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的A1B1C1;并寫出A1、B1、C1三點(diǎn)的坐標(biāo).

2)求出(1)中C點(diǎn)旋轉(zhuǎn)到C1點(diǎn)所經(jīng)過的路徑長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5y軸交于點(diǎn)A,與x軸交于點(diǎn)B.拋物線y=﹣x2+bx+cA、B兩點(diǎn).

1)寫出點(diǎn)A,B的坐標(biāo);

2)求拋物線的解析式;

3)過點(diǎn)AAC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一動(dòng)點(diǎn)(點(diǎn)PAC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,點(diǎn)D在邊AC上,BD的垂直平分線交CA的延長(zhǎng)線于點(diǎn)E,交BD于點(diǎn)F,聯(lián)結(jié)BE,ED2EAEC

1)求證:∠EBA=∠C

2)如果BDCD,求證:AB2ADAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫的如意湖,是來鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識(shí)后,劉明和王華同學(xué)決定用自己學(xué)到的知識(shí)測(cè)量“大王米”的高度,他們制訂了測(cè)量方案,并利用課余時(shí)間完成了實(shí)地測(cè)量.測(cè)量項(xiàng)目及結(jié)果如下表:

項(xiàng)目

內(nèi)容

課題

測(cè)量鄭州會(huì)展賓館的高度

測(cè)量示意圖

如圖,在E點(diǎn)用測(cè)傾器DE測(cè)得樓頂B的仰角是α,前進(jìn)一段距離到達(dá)C點(diǎn)用測(cè)傾器CF測(cè)得樓頂B的仰角是β,且點(diǎn)A、B、CD、E、F均在同一豎直平面內(nèi)

測(cè)量數(shù)據(jù)

α的度數(shù)

β的度數(shù)

EC的長(zhǎng)度

測(cè)傾器DE,CF的高度

40°

45°

53

1.5

請(qǐng)你幫助該小組根據(jù)上表中的測(cè)量數(shù)據(jù),求出鄭州會(huì)展賓館的高度(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB90°,BC3AC4,點(diǎn)OAB的中點(diǎn),點(diǎn)D是邊AC上一點(diǎn),DEBD,交BC的延長(zhǎng)線于點(diǎn)E,ODDF,交BC邊于點(diǎn)F,過點(diǎn)EEGAB,垂足為點(diǎn)GEG分別交BD、DF、DC于點(diǎn)MN、H

(1)求證:;

(2)設(shè)CDx,NEy,求y關(guān)于x的函數(shù)關(guān)系式及其定義域;

(3)當(dāng)△DEF是以DE為腰的等腰三角形時(shí),求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過程.

解一元二次不等式:x2﹣3x>0.

解:設(shè)x2﹣3x=0,解得:x1=0,x2=5.則拋物線y=x2﹣3x與x軸的交點(diǎn)坐標(biāo)為(0,0)和(3,0).畫出二次函數(shù)y=x2﹣3x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0或x>3時(shí)函數(shù)圖象位于x軸上方,此時(shí)y>0,即x2﹣3x>0,所以,一元二次不等式x2﹣3x>0的解集為:x<0或x>3.

通過對(duì)上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:

(1)上述解答過程中,滲透了下列數(shù)學(xué)思想中的      .(只填序號(hào))

①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想 ④整體思想

(2)一元二次不等式x2﹣3x<0的解集為   

(3)用類似的方法解一元二次不等式:x2﹣3x﹣4<0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,按要求畫出A1B1C1A2B2C2;

(1)O為位似中心,在點(diǎn)O的同側(cè)作A1B1C1,使得它與原三角形的位似比為12;

(2)ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到A2B2C2,并求出點(diǎn)A旋轉(zhuǎn)的路徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案