【題目】如圖,已知ABC∽△ADE,AB30cm,BD18cmBC20cm,∠BAC75°,∠ABC40°

求:(1)∠ADE和∠AED的度數(shù);

2DE的長.

【答案】(1)ADE=40°,AED =65°;(2)8cm

【解析】

(1)根據(jù)三角形的內角和得到∠ACB=180°﹣∠BAC﹣∠ABC=65°,根據(jù)相似三角形的對應角相等即可得到結論;

(2)根據(jù)相似三角形的對應邊的比相等即可得到結論

1)∵∠BAC=75°,∠ABC=40°,∴∠ACB=180°﹣∠BAC﹣∠ABC=65°.

∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠ACB=65°;

(2)∵△ABC∽△ADE,∴

AB=30cm,BD=18cmBC=20cm,∴,∴DE=8(cm).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場有一個可以自由轉動的圓形轉盤(如圖).規(guī)定:顧客購物100元以上可以獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一個區(qū)域就獲得相應的獎品(指針指向兩個扇形的交線時,當作指向右邊的扇形).下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

轉動轉盤的次數(shù)n

100

150

200

500

800

1000

落在鉛筆的次數(shù)m

68

111

136

345

546

701

落在鉛筆的頻率

(結果保留小數(shù)點后兩位)

0.68

0.74

0.68

0.69

0.68

0.70

1)轉動該轉盤一次,獲得鉛筆的概率約為_______;(結果保留小數(shù)點后一位)

2)鉛筆每只0.5元,飲料每瓶3元,經(jīng)統(tǒng)計該商場每天約有4000名顧客參加抽獎活動,請計算該商場每天需要支出的獎品費用;

3)在(2)的條件下,該商場想把每天支出的獎品費用控制在3000元左右,則轉盤上“一瓶飲料”區(qū)域的圓心角應調整為______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某生利用標桿測量學校旗桿的高度,標桿CD等于3m,標桿與旗桿的水平距離BD15m,人的眼睛距地面的高度EF1.6m,人與標桿CD的水平距離DF2m.則旗桿AB的高度為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD,按照下列操作作圖:①以A為圓心,AC長為半徑畫弧交AD的延長線于點E;②以E為圓心,EC長為半徑畫弧交DE的延長線于點F;③分別以C,F為圓心,大于CF的長為半徑畫弧,兩弧相交于點N;④作射線EN,根據(jù)作圖,若∠ACB=72°,則∠FEN的度數(shù)為(  )

A. 54° B. 63° C. 72° D. 75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+ca≠0)圖象的一部分如圖所示,其對稱軸為x2,與x軸的一個交點是(﹣1,0),有以下結論:①abc0;②4a2b+c0;③4a+b0④拋物線與x軸的另一個交點是(50)⑤若點(﹣3,y1)(﹣6y2)都在拋物線上,則y1y2.其中正確的是_____.(只填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點為(﹣1,0),(3,0

C. x1時,y有最大值為0

D. 拋物線的對稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PAPB是⊙O的切線,AB為切點,∠OAB30°.

1)求∠APB的度數(shù);

2)當OA3時,求AP的長.

查看答案和解析>>

同步練習冊答案